Suppr超能文献

力分布揭示了大肠杆菌 Hsp90 的信号转导。

Force distribution reveals signal transduction in E. coli Hsp90.

机构信息

Molecular Biomechanics, Heidelberger Institut für Theoretische Studien gGmbH, Heidelberg, Germany.

出版信息

Biophys J. 2012 Nov 21;103(10):2195-202. doi: 10.1016/j.bpj.2012.09.008. Epub 2012 Nov 20.

Abstract

Heat-shock protein 90 (Hsp90) is an ubiquitous chaperone that is essential for cell function in that it promotes client-protein folding and stabilization. Its function is tightly controlled by an ATP-dependent large conformational transition between the open and closed states of the Hsp90 dimer. The underlying allosteric pathway has remained largely unknown, but it is revealed here in atomistic detail for the Escherichia coli homolog HtpG. Using force-distribution analysis based on molecular-dynamics simulations (>1 μs in total), we identify an internal signaling pathway that spans from the nucleotide-binding site to an ~2.3-nm-distant region in the HtpG middle domain, that serves as a dynamic hinge region, and to a putative client-protein-binding site in the middle domain. The force transmission is triggered by ATP capturing a magnesium ion and thereby rotating and bending a proximal long α-helix, which represents the major force channel into the middle domain. This allosteric mechanism is, with statistical significance, distinct from the dynamics in the ADP and apo states. Tracking the distribution of forces is likely to be a promising tool for understanding and guiding experiments of complex allosteric proteins in general.

摘要

热休克蛋白 90(Hsp90)是一种普遍存在的伴侣蛋白,对于细胞功能至关重要,因为它促进了客户蛋白的折叠和稳定。其功能受到 Hsp90 二聚体开放和关闭状态之间的 ATP 依赖性大构象转变的严格控制。尽管潜在的变构途径在很大程度上仍然未知,但在这里以原子细节揭示了大肠杆菌同源物 HtpG 的变构途径。使用基于分子动力学模拟的力分布分析(总计>1 μs),我们确定了一条从核苷酸结合位点到 HtpG 中间结构域中约 2.3nm 远的区域的内部信号通路,该区域充当动态铰链区域,并到中间结构域中的假定客户蛋白结合位点。力传递是由 ATP 捕获镁离子触发的,从而旋转和弯曲近端长α-螺旋,这是进入中间结构域的主要力通道。这种变构机制与 ADP 和无配体状态的动力学有统计学意义上的区别。跟踪力的分布可能是理解和指导一般复杂变构蛋白实验的有前途的工具。

相似文献

1
Force distribution reveals signal transduction in E. coli Hsp90.
Biophys J. 2012 Nov 21;103(10):2195-202. doi: 10.1016/j.bpj.2012.09.008. Epub 2012 Nov 20.
6
hsp90: twist and fold.
Cell. 2006 Oct 20;127(2):251-3. doi: 10.1016/j.cell.2006.10.004.
7
Folding and Domain Interactions of Three Orthologs of Hsp90 Studied by Single-Molecule Force Spectroscopy.
Structure. 2018 Jan 2;26(1):96-105.e4. doi: 10.1016/j.str.2017.11.023. Epub 2017 Dec 21.
8
Uncovering a region of heat shock protein 90 important for client binding in E. coli and chaperone function in yeast.
Mol Cell. 2013 Feb 7;49(3):464-73. doi: 10.1016/j.molcel.2012.11.017. Epub 2012 Dec 20.
9
Molecular mechanism of bacterial Hsp90 pH-dependent ATPase activity.
Protein Sci. 2017 Jun;26(6):1206-1213. doi: 10.1002/pro.3174. Epub 2017 Apr 20.
10
Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling.
Proc Natl Acad Sci U S A. 2011 May 17;108(20):8206-11. doi: 10.1073/pnas.1104703108. Epub 2011 Apr 27.

引用本文的文献

1
The dynamic triage interplay of Hsp90 with its chaperone cycle and client binding.
Nat Commun. 2024 Dec 11;15(1):10661. doi: 10.1038/s41467-024-55026-y.
2
The Onset of Molecule-Spanning Dynamics in Heat Shock Protein Hsp90.
Adv Sci (Weinh). 2023 Dec;10(36):e2304262. doi: 10.1002/advs.202304262. Epub 2023 Nov 20.
3
Insight into the Nucleotide Based Modulation of the Grp94 Molecular Chaperone Using Multiscale Dynamics.
J Phys Chem B. 2023 Jun 22;127(24):5389-5409. doi: 10.1021/acs.jpcb.3c00260. Epub 2023 Jun 9.
5
Autoregulation of von Willebrand factor function by a disulfide bond switch.
Sci Adv. 2018 Feb 28;4(2):eaaq1477. doi: 10.1126/sciadv.aaq1477. eCollection 2018 Feb.
6
One-Way Allosteric Communication between the Two Disulfide Bonds in Tissue Factor.
Biophys J. 2017 Jan 10;112(1):78-86. doi: 10.1016/j.bpj.2016.12.003.
8
Access Path to the Ligand Binding Pocket May Play a Role in Xenobiotics Selection by AhR.
PLoS One. 2016 Jan 4;11(1):e0146066. doi: 10.1371/journal.pone.0146066. eCollection 2016.
9
Mapping Mechanical Force Propagation through Biomolecular Complexes.
Nano Lett. 2015 Nov 11;15(11):7370-6. doi: 10.1021/acs.nanolett.5b02727. Epub 2015 Aug 19.
10
Dynamic Allostery of the Catabolite Activator Protein Revealed by Interatomic Forces.
PLoS Comput Biol. 2015 Aug 5;11(8):e1004358. doi: 10.1371/journal.pcbi.1004358. eCollection 2015 Aug.

本文引用的文献

1
GROMACS 4:  Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation.
J Chem Theory Comput. 2008 Mar;4(3):435-47. doi: 10.1021/ct700301q.
3
Corresponding functional dynamics across the Hsp90 Chaperone family: insights from a multiscale analysis of MD simulations.
PLoS Comput Biol. 2012;8(3):e1002433. doi: 10.1371/journal.pcbi.1002433. Epub 2012 Mar 22.
4
Structure-based model of allostery predicts coupling between distant sites.
Proc Natl Acad Sci U S A. 2012 Mar 27;109(13):4875-80. doi: 10.1073/pnas.1116274109. Epub 2012 Mar 8.
5
Changes in dynamics upon oligomerization regulate substrate binding and allostery in amino acid kinase family members.
PLoS Comput Biol. 2011 Sep;7(9):e1002201. doi: 10.1371/journal.pcbi.1002201. Epub 2011 Sep 29.
6
Dynamic Interaction of Hsp90 with Its Client Protein p53.
J Mol Biol. 2011 Aug 5;411(1):158-73. doi: 10.1016/j.jmb.2011.05.030. Epub 2011 May 30.
7
Implementation of force distribution analysis for molecular dynamics simulations.
BMC Bioinformatics. 2011 Apr 18;12:101. doi: 10.1186/1471-2105-12-101.
8
Mechanical energy transfer and dissipation in fibrous beta-sheet-rich proteins.
Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jun;81(6 Pt 1):061910. doi: 10.1103/PhysRevE.81.061910. Epub 2010 Jun 7.
9
Mapping the druggable allosteric space of G-protein coupled receptors: a fragment-based molecular dynamics approach.
Chem Biol Drug Des. 2010 Sep 1;76(3):201-17. doi: 10.1111/j.1747-0285.2010.01012.x. Epub 2010 Jul 5.
10
Dynamic allostery in the methionine repressor revealed by force distribution analysis.
PLoS Comput Biol. 2009 Nov;5(11):e1000574. doi: 10.1371/journal.pcbi.1000574. Epub 2009 Nov 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验