Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
Phys Rev Lett. 2010 Jun 11;104(23):230601. doi: 10.1103/PhysRevLett.104.230601.
We investigate growing interfaces of topological-defect turbulence in the electroconvection of nematic liquid crystals. The interfaces exhibit self-affine roughening characterized by both spatial and temporal scaling laws of the Kardar-Parisi-Zhang theory in 1+1 dimensions. Moreover, we reveal that the distribution and the two-point correlation of the interface fluctuations are universal ones governed by the largest eigenvalue of random matrices. This provides quantitative experimental evidence of the universality prescribing detailed information of scale-invariant fluctuations.
我们研究了向列相液晶的电致对流中拓扑缺陷湍流的生长界面。界面表现出自相似性,具有卡达诺-帕里西-张理论在 1+1 维时空的时空标度律。此外,我们揭示了界面涨落的分布和两点相关是由随机矩阵的最大本征值控制的普适性。这为规定了标度不变涨落详细信息的普适性提供了定量的实验证据。