Suppr超能文献

动力学普适类的斐波那契家族。

Fibonacci family of dynamical universality classes.

作者信息

Popkov Vladislav, Schadschneider Andreas, Schmidt Johannes, Schütz Gunter M

机构信息

Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany; Centro Interdipartimentale per lo Studio di Dinamiche Complesse, Università di Firenze, 50019 Sesto Fiorentino, Italy;

Institut für Theoretische Physik, Universität zu Köln, 50937 Cologne, Germany;

出版信息

Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12645-50. doi: 10.1073/pnas.1512261112. Epub 2015 Sep 30.

Abstract

Universality is a well-established central concept of equilibrium physics. However, in systems far away from equilibrium, a deeper understanding of its underlying principles is still lacking. Up to now, a few classes have been identified. Besides the diffusive universality class with dynamical exponent [Formula: see text], another prominent example is the superdiffusive Kardar-Parisi-Zhang (KPZ) class with [Formula: see text]. It appears, e.g., in low-dimensional dynamical phenomena far from thermal equilibrium that exhibit some conservation law. Here we show that both classes are only part of an infinite discrete family of nonequilibrium universality classes. Remarkably, their dynamical exponents [Formula: see text] are given by ratios of neighboring Fibonacci numbers, starting with either [Formula: see text] (if a KPZ mode exist) or [Formula: see text] (if a diffusive mode is present). If neither a diffusive nor a KPZ mode is present, all dynamical modes have the Golden Mean [Formula: see text] as dynamical exponent. The universal scaling functions of these Fibonacci modes are asymmetric Lévy distributions that are completely fixed by the macroscopic current density relation and compressibility matrix of the system and hence accessible to experimental measurement.

摘要

普遍性是平衡态物理学中一个已确立的核心概念。然而,在远离平衡态的系统中,对其基本原理仍缺乏更深入的理解。到目前为止,已经确定了几类。除了具有动力学指数[公式:见正文]的扩散普遍性类之外,另一个突出的例子是具有[公式:见正文]的超扩散 Kardar-Parisi-Zhang(KPZ)类。例如,它出现在远离热平衡且表现出某些守恒定律的低维动力学现象中。在这里,我们表明这两类都只是非平衡普遍性类的无限离散族的一部分。值得注意的是,它们的动力学指数[公式:见正文]由相邻斐波那契数的比值给出,要么从[公式:见正文]开始(如果存在 KPZ 模式),要么从[公式:见正文]开始(如果存在扩散模式)。如果既不存在扩散模式也不存在 KPZ 模式,那么所有动力学模式都具有黄金分割比[公式:见正文]作为动力学指数。这些斐波那契模式的通用标度函数是不对称的 Lévy 分布,它们完全由系统的宏观电流密度关系和压缩性矩阵确定,因此可以通过实验测量得到。

相似文献

1
Fibonacci family of dynamical universality classes.动力学普适类的斐波那契家族。
Proc Natl Acad Sci U S A. 2015 Oct 13;112(41):12645-50. doi: 10.1073/pnas.1512261112. Epub 2015 Sep 30.
3
Quest for the golden ratio universality class.探寻黄金比例普适类。
Phys Rev E. 2024 Apr;109(4-1):044111. doi: 10.1103/PhysRevE.109.044111.
7
Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet.量子海森堡磁体中的 Kardar-Parisi-Zhang 物理学
Phys Rev Lett. 2019 May 31;122(21):210602. doi: 10.1103/PhysRevLett.122.210602.

本文引用的文献

1
Numerical estimate of the Kardar-Parisi-Zhang universality class in (2+1) dimensions.二维加一维中 Kardar-Parisi-Zhang 普适类的数值估计。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Jul;92(1):010101. doi: 10.1103/PhysRevE.92.010101. Epub 2015 Jul 2.
2
Fourier's law from a chain of coupled planar harmonic oscillators under energy-conserving noise.能量守恒噪声下耦合平面简谐振子链的傅里叶定律
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Feb;89(2):022105. doi: 10.1103/PhysRevE.89.022105. Epub 2014 Feb 6.
7
Exact results for anomalous transport in one-dimensional hamiltonian systems.一维哈密顿系统中反常输运的精确结果。
Phys Rev Lett. 2012 May 4;108(18):180601. doi: 10.1103/PhysRevLett.108.180601. Epub 2012 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验