The Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, 2250 Alcazar St., Los Angeles, CA 90033, USA.
Biomaterials. 2010 Dec;31(35):9202-11. doi: 10.1016/j.biomaterials.2010.08.013. Epub 2010 Sep 24.
The regenerative capability of enamel, the hardest tissue in the vertebrate body, is fundamentally limited due to cell apoptosis following maturation of the tissue. Synthetic strategies to promote enamel formation have the potential to repair damage, increase the longevity of teeth and improve the understanding of the events leading to tissue formation. Using a self-assembling bioactive matrix, we demonstrate the ability to induce ectopic formation of enamel at chosen sites adjacent to a mouse incisor cultured in vivo under the kidney capsule. The resulting material reveals the highly organized, hierarchical structure of hydroxyapatite crystallites similar to native enamel. This artificially triggered formation of organized mineral demonstrates a pathway for developing cell fabricated materials for treatment of dental caries, the most ubiquitous disease in man. Additionally, the artificial matrix provides a unique tool to probe cellular mechanisms involved in tissue formation further enabling the development of tooth organ replacements.
由于组织成熟后细胞凋亡,脊椎动物体内最坚硬的组织——牙釉质的再生能力受到根本限制。促进牙釉质形成的合成策略有可能修复损伤、延长牙齿寿命,并增进对导致组织形成的事件的理解。本研究使用自组装的生物活性基质,证明了在体内肾囊下培养的小鼠切牙邻近选择部位诱导异位牙釉质形成的能力。所得材料显示出类似于天然牙釉质的高度有序的分级结构的羟基磷灰石晶体。这种人为触发的有序矿物质形成证明了开发用于治疗龋齿(人类最普遍的疾病)的细胞制造材料的途径。此外,人工基质提供了一种独特的工具来探究组织形成中涉及的细胞机制,进一步实现牙齿器官替代物的开发。