Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, Seoul 03722, Korea.
NGeneS Inc., Ansan-si 15495, Korea.
J Adv Res. 2024 Jul;61:119-131. doi: 10.1016/j.jare.2023.08.012. Epub 2023 Aug 22.
Most mineralized tissues in our body are present in bones and teeth. Human induced pluripotent stem cells (hiPSCs) are promising candidates for cell therapy to help regenerate bone defects and teeth loss. The extracellular matrix (ECM) is a non-cellular structure secreted by cells. Studies on the dynamic microenvironment of ECM are necessary for stem cell-based therapies.
We aim to optimize an effective protocol for hiPSC differentiation into dental cells without utilizing animal-derived factors or cell feeders that can be applied to humans and to mineralize differentiated dental cells into hard tissues.
For the differentiation of both dental epithelial cells (DECs) and dental mesenchymal cells (DMCs) from hiPSCs, an embryoid body (EB) was formed from hiPSCs. hiPSC were differentiated into neural crest cells with an induction medium utilized in our previous study, and hiPSC-derived DECs were differentiated with a BMP-modulated customized medium. hiPSC-dental cells were then characterized, analyzed, and validated with transcriptomic analysis, western blotting, and RT-qPCR. To form mineralized tissues, hiPSC-derived DECs were recombined with hiPSC-derived DMCs encapsulated in various biomaterials, including gelatin methacryloyl (GelMA), collagen, and agar matrix.
These hiPSC-derived dental cells are highly osteogenic and chondro-osteogenic in photocrosslinkable GelMA hydrogel and collagen type I microenvironments. Furthermore, hiPSC-derived dental cells in agar gel matrix induced the formation of a bioengineered tooth.
Our study provides an approach for applying hiPSCs for hard tissue regeneration, including tooth and bone. This study has immense potential to provide a novel technology for bioengineering organs for various regenerative therapies.
我们体内的大多数矿化组织都存在于骨骼和牙齿中。人类诱导多能干细胞(hiPSCs)是细胞治疗的有前途的候选者,可帮助再生骨缺损和牙齿缺失。细胞外基质(ECM)是由细胞分泌的非细胞结构。研究 ECM 的动态微环境对于基于干细胞的治疗方法是必要的。
我们旨在优化一种有效的 hiPSC 分化为牙细胞的方案,而不使用动物来源的因子或细胞饲养物,该方案可应用于人类,并将分化的牙细胞矿化为硬组织。
为了从 hiPSCs 分化出牙上皮细胞(DEC)和牙间充质细胞(DMC),从 hiPSCs 形成类胚体(EB)。hiPSC 先用我们之前研究中使用的诱导培养基分化为神经嵴细胞,然后用 BMP 调节的定制培养基分化 hiPSC 衍生的 DEC。然后通过转录组分析、western blot 和 RT-qPCR 对 hiPSC 衍生的牙细胞进行特征分析和验证。为了形成矿化组织,将 hiPSC 衍生的 DEC 与包裹在各种生物材料中的 hiPSC 衍生的 DMC 重组,包括明胶甲基丙烯酰(GelMA)、胶原蛋白和琼脂基质。
这些 hiPSC 衍生的牙细胞在光交联 GelMA 水凝胶和胶原蛋白 I 微环境中具有高度成骨和成软骨成骨特性。此外,琼脂凝胶基质中的 hiPSC 衍生的牙细胞诱导了生物工程牙齿的形成。
我们的研究为硬组织再生(包括牙齿和骨骼)提供了一种应用 hiPSCs 的方法。这项研究为各种再生疗法的器官工程提供了一种有前途的新技术。