Brannon A Rose, Reddy Anupama, Seiler Michael, Arreola Alexandra, Moore Dominic T, Pruthi Raj S, Wallen Eric M, Nielsen Matthew E, Liu Huiqing, Nathanson Katherine L, Ljungberg Börje, Zhao Hongjuan, Brooks James D, Ganesan Shridar, Bhanot Gyan, Rathmell W Kimryn
Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA.
Genes Cancer. 2010 Feb 1;1(2):152-163. doi: 10.1177/1947601909359929.
Clear cell renal cell carcinoma (ccRCC) is the predominant RCC subtype, but even within this classification, the natural history is heterogeneous and difficult to predict. A sophisticated understanding of the molecular features most discriminatory for the underlying tumor heterogeneity should be predicated on identifiable and biologically meaningful patterns of gene expression. Gene expression microarray data were analyzed using software that implements iterative unsupervised consensus clustering algorithms to identify the optimal molecular subclasses, without clinical or other classifying information. ConsensusCluster analysis identified two distinct subtypes of ccRCC within the training set, designated clear cell type A (ccA) and B (ccB). Based on the core tumors, or most well-defined arrays, in each subtype, logical analysis of data (LAD) defined a small, highly predictive gene set that could then be used to classify additional tumors individually. The subclasses were corroborated in a validation data set of 177 tumors and analyzed for clinical outcome. Based on individual tumor assignment, tumors designated ccA have markedly improved disease-specific survival compared to ccB (median survival of 8.6 vs 2.0 years, P = 0.002). Analyzed by both univariate and multivariate analysis, the classification schema was independently associated with survival. Using patterns of gene expression based on a defined gene set, ccRCC was classified into two robust subclasses based on inherent molecular features that ultimately correspond to marked differences in clinical outcome. This classification schema thus provides a molecular stratification applicable to individual tumors that has implications to influence treatment decisions, define biological mechanisms involved in ccRCC tumor progression, and direct future drug discovery.
透明细胞肾细胞癌(ccRCC)是肾细胞癌的主要亚型,但即使在这种分类中,其自然病程也具有异质性且难以预测。对最能区分潜在肿瘤异质性的分子特征的深入理解,应以可识别且具有生物学意义的基因表达模式为基础。使用实施迭代无监督一致性聚类算法的软件分析基因表达微阵列数据,以识别最佳分子亚类,无需临床或其他分类信息。一致性聚类分析在训练集中确定了ccRCC的两种不同亚型,分别命名为透明细胞A型(ccA)和B型(ccB)。基于每种亚型中的核心肿瘤或定义最明确的阵列,数据逻辑分析(LAD)定义了一个小的、具有高度预测性的基因集,然后可用于单独对其他肿瘤进行分类。在一个包含177个肿瘤的验证数据集中证实了这些亚类,并分析了临床结果。根据个体肿瘤分类,与ccB相比,被归类为ccA的肿瘤具有显著改善的疾病特异性生存率(中位生存期分别为8.6年和2.0年,P = 0.002)。通过单变量和多变量分析,该分类方案与生存率独立相关。基于定义的基因集的基因表达模式,ccRCC根据内在分子特征被分为两个稳定的亚类,这些特征最终对应于临床结果的显著差异。因此,这种分类方案提供了一种适用于个体肿瘤的分子分层方法,对影响治疗决策、定义ccRCC肿瘤进展所涉及的生物学机制以及指导未来药物研发具有重要意义。