National Renewable Energy Laboratory, Golden, Colorado 80401-3393, United States.
Nano Lett. 2010 Oct 13;10(10):4099-104. doi: 10.1021/nl102203s.
We report on the synthesis and electrochemical properties of oriented NiO-TiO(2) nanotube (NT) arrays as electrodes for supercapacitors. The morphology of the films prepared by electrochemically anodizing Ni-Ti alloy foils was characterized by scanning and transmission electron microscopies, X-ray diffraction, and photoelectron spectroscopies. The morphology, crystal structure, and composition of the NT films were found to depend on the preparation conditions (anodization voltage and postgrowth annealing temperature). Annealing the as-grown NT arrays to a temperature of 600 °C transformed them from an amorphous phase to a mixture of crystalline rock salt NiO and rutile TiO(2). Changes in the morphology and crystal structure strongly influenced the electrochemical properties of the NT electrodes. Electrodes composed of NT films annealed at 600 °C displayed pseudocapacitor (redox-capacitor) behavior, including rapid charge/discharge kinetics and stable long-term cycling performance. At similar film thicknesses and surface areas, the NT-based electrodes showed a higher rate capability than the randomly packed nanoparticle-based electrodes. Even at the highest scan rate (500 mV/s), the capacitance of the NT electrodes was not much smaller (within 12%) than the capacitance measured at the slowest scan rate (5 mV/s). The faster charge/discharge kinetics of NT electrodes at high scan rates is attributed to the more ordered NT film architecture, which is expected to facilitate electron and ion transport during the charge-discharge reactions.
我们报告了取向的 NiO-TiO(2) 纳米管 (NT) 阵列作为超级电容器电极的合成和电化学性质。通过扫描和透射电子显微镜、X 射线衍射和光电子能谱对通过电化学阳极氧化 Ni-Ti 合金箔制备的薄膜的形态进行了表征。发现 NT 薄膜的形态、晶体结构和组成取决于制备条件(阳极氧化电压和后生长退火温度)。将生长的 NT 阵列退火至 600°C 的温度将其从非晶相转变为晶态岩盐 NiO 和金红石 TiO(2) 的混合物。形态和晶体结构的变化强烈影响 NT 电极的电化学性能。在 600°C 下退火的 NT 薄膜电极表现出赝电容(氧化还原电容器)行为,包括快速的充放电动力学和稳定的长期循环性能。在相似的薄膜厚度和表面积下,基于 NT 的电极比随机堆积的基于纳米颗粒的电极具有更高的倍率性能。即使在最高扫描速率(500 mV/s)下,NT 电极的电容也不会比在最慢扫描速率(5 mV/s)下测量的电容小很多(在 12%以内)。在高扫描速率下 NT 电极更快的充放电动力学归因于更有序的 NT 薄膜结构,这有望在充放电反应期间促进电子和离子传输。