Suppr超能文献

利用连续前列腺特异性抗原测量、临床分期和活检 Gleason 评分预测患者特异性风险和百分位队列风险的病理分期结果。

Prediction of patient-specific risk and percentile cohort risk of pathological stage outcome using continuous prostate-specific antigen measurement, clinical stage and biopsy Gleason score.

机构信息

Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA.

出版信息

BJU Int. 2011 May;107(10):1562-9. doi: 10.1111/j.1464-410X.2010.09692.x. Epub 2010 Sep 28.

Abstract

OBJECTIVES

• To develop a '2010 Partin Nomogram' with total prostate-specific antigen (tPSA) as a continuous biomarker, in light of the fact that the current 2007 Partin Tables restrict the application of tPSA as a non-continuous biomarker by creating 'groups' for risk stratification with tPSA levels (ng/mL) of 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0 and >10.0. • To use a 'predictiveness curve' to calculate the percentile risk of a patient among the cohort.

PATIENTS AND METHODS

• In all, 5730 and 1646 patients were treated with radical prostatectomy (without neoadjuvant therapy) between 2000 and 2005 at the Johns Hopkins Hospital (JHH) and University Clinic Hamburg-Eppendorf (UCHE), respectively. • Multinomial logistic regression analysis was performed to create a model for predicting the risk of the four non-ordered pathological stages, i.e. organ-confined disease (OC), extraprostatic extension (EPE), and seminal vesicle (SV+) and lymph node (LN+) involvement. • Patient-specific risk was modelled as a function of the B-spline basis of tPSA (with knots at the first, second and third quartiles), clinical stage (T1c, T2a, and T2b/T2c) and biopsy Gleason score (5-6, 3 + 4 = 7, 4 + 3 = 7, 8-10).

RESULTS

• The '2010 Partin Nomogram' calculates patient-specific absolute risk for all four pathological outcomes (OC, EPE, SV+, LN+) given a patient's preoperative clinical stage, tPSA and biopsy Gleason score. • While having similar performance in terms of calibration and discriminatory power, this new model provides a more accurate prediction of patients' pathological stage than the 2007 Partin Tables model. • The use of 'predictiveness curves' has also made it possible to obtain the percentile risk of a patient among the cohort and to gauge the impact of risk thresholds for making decisions regarding radical prostatectomy.

CONCLUSION

• The '2010 Partin Nomogram' using tPSA as a continuous biomarker together with the corresponding 'predictiveness curve' will help clinicians and patients to make improved treatment decisions.

摘要

目的

  1. 开发一种基于总前列腺特异性抗原(tPSA)的“2010 年 Partin 列线图”,因为当前的 2007 年 Partin 表通过为 tPSA 水平(ng/mL)为 0-2.5、2.6-4.0、4.1-6.0、6.1-10.0 和>10.0 的风险分层创建“组”,限制了 tPSA 作为非连续生物标志物的应用。

  2. 使用“预测曲线”计算队列中患者的百分位风险。

患者和方法

  1. 2000 年至 2005 年间,分别有 5730 名和 1646 名患者在约翰霍普金斯医院(JHH)和汉堡-埃彭多夫大学诊所(UCHE)接受根治性前列腺切除术(无新辅助治疗)。

  2. 进行多项逻辑回归分析,以创建预测四个非有序病理阶段(局限于器官疾病(OC)、前列腺外扩展(EPE)、精囊(SV+)和淋巴结(LN+)受累)的风险模型。

  3. 患者特异性风险作为 tPSA(在第一个、第二个和第三个四分位数处有节点)、临床分期(T1c、T2a 和 T2b/T2c)和活检 Gleason 评分(5-6、3+4=7、4+3=7、8-10)的 B 样条基函数的函数进行建模。

结果

  1. “2010 年 Partin 列线图”根据患者术前临床分期、tPSA 和活检 Gleason 评分,计算患者对所有四个病理结果(OC、EPE、SV+、LN+)的特定风险。

  2. 虽然在校准和区分能力方面表现相似,但这种新模型比 2007 年 Partin 表模型更准确地预测患者的病理分期。

  3. 使用“预测曲线”还可以获得队列中患者的百分位风险,并评估风险阈值对根治性前列腺切除术决策的影响。

结论

  1. 使用 tPSA 作为连续生物标志物的“2010 年 Partin 列线图”以及相应的“预测曲线”将帮助临床医生和患者做出更好的治疗决策。
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ea02/3082635/11e1039f35fc/nihms-285307-f0001.jpg

相似文献

引用本文的文献

7
Imaging of distant metastases of prostate cancer.前列腺癌远处转移的影像学表现。
Med Oncol. 2018 Sep 14;35(11):148. doi: 10.1007/s12032-018-1208-2.

本文引用的文献

3
External validation of the updated Partin tables in a cohort of North American men.北美男性队列中更新的 Partin 表的外部验证。
J Urol. 2008 Sep;180(3):898-902; discussion 902-3. doi: 10.1016/j.juro.2008.05.044. Epub 2008 Jul 17.
5
Predictive models and prostate cancer.预测模型与前列腺癌。
Nat Clin Pract Urol. 2008 Feb;5(2):82-92. doi: 10.1038/ncpuro0972.
8
Evaluating the predictiveness of a continuous marker.评估连续标志物的预测性。
Biometrics. 2007 Dec;63(4):1181-8. doi: 10.1111/j.1541-0420.2007.00814.x. Epub 2007 May 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验