Molecular, Cellular, and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA.
J Mol Biol. 2010 Nov 26;404(2):183-201. doi: 10.1016/j.jmb.2010.09.016. Epub 2010 Sep 25.
In fission yeast, Sty1 and Gcn2 are important protein kinases that regulate gene expression in response to amino acid starvation. The translation factor subunit Int6/eIF3e promotes Sty1-dependent response by increasing the abundance of Atf1, a transcription factor targeted by Sty1. While Gcn2 promotes expression of amino acid biosynthesis enzymes, the mechanism and function of Sty1 activation and Int6/eIF3e involvement during this nutrient stress are not understood. Here we show that mutants lacking sty1(+) or gcn2(+) display reduced viabilities during histidine depletion stress in a manner suppressible by the antioxidant N-acetyl cysteine, suggesting that these protein kinases function to alleviate endogenous oxidative damage generated during nutrient starvation. Int6/eIF3e also promotes cell viability by a mechanism involving the stimulation of Sty1 response to oxidative damage. In further support of these observations, microarray data suggest that, during histidine starvation, int6Δ increases the duration of Sty1-activated gene expression linked to oxidative stress due to the initial attenuation of Sty1-dependent transcription. Moreover, loss of gcn2 induces the expression of a new set of genes not activated in wild-type cells starved for histidine. These genes encode heatshock proteins, redox enzymes, and proteins involved in mitochondrial maintenance, in agreement with the idea that oxidative stress is imposed on gcn2Δ cells. Furthermore, early Sty1 activation promotes rapid Gcn2 activation on histidine starvation. These results suggest that Gcn2, Sty1, and Int6/eIF3e are functionally integrated and cooperate to respond to oxidative stress generated during histidine starvation.
在裂殖酵母中,Sty1 和 Gcn2 是重要的蛋白激酶,它们可以调节基因表达以响应氨基酸饥饿。翻译因子亚基 Int6/eIF3e 通过增加 Sty1 的靶转录因子 Atf1 的丰度来促进 Sty1 依赖性反应。虽然 Gcn2 促进了氨基酸生物合成酶的表达,但在这种营养胁迫下,Sty1 的激活机制和 Int6/eIF3e 的作用尚不清楚。在这里,我们发现缺乏 sty1(+)或 gcn2(+)的突变体在组氨酸耗尽应激下的存活率降低,这种降低可以被抗氧化剂 N-乙酰半胱氨酸抑制,这表明这些蛋白激酶的功能是减轻营养饥饿过程中产生的内源性氧化损伤。Int6/eIF3e 还通过一种涉及刺激 Sty1 对氧化损伤反应的机制来促进细胞存活率。进一步的支持这些观察结果,微阵列数据表明,在组氨酸饥饿期间,由于 Sty1 依赖性转录的初始衰减,int6Δ 通过延长与氧化应激相关的 Sty1 激活基因表达的持续时间来提高 Sty1 反应。此外,gcn2 的缺失诱导了一组在野生型细胞饥饿时未被激活的新基因的表达。这些基因编码热休克蛋白、氧化还原酶和参与线粒体维持的蛋白质,这与 gcn2Δ 细胞受到氧化应激的观点一致。此外,早期的 Sty1 激活促进了组氨酸饥饿时 Gcn2 的快速激活。这些结果表明,Gcn2、Sty1 和 Int6/eIF3e 是功能上整合的,并合作响应组氨酸饥饿过程中产生的氧化应激。