Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia.
Plant Physiol. 2010 Nov;154(3):1143-57. doi: 10.1104/pp.110.161612. Epub 2010 Sep 27.
Malate dehydrogenase (MDH) catalyzes a reversible NAD(+)-dependent-dehydrogenase reaction involved in central metabolism and redox homeostasis between organelle compartments. To explore the role of mitochondrial MDH (mMDH) in Arabidopsis (Arabidopsis thaliana), knockout single and double mutants for the highly expressed mMDH1 and lower expressed mMDH2 isoforms were constructed and analyzed. A mmdh1mmdh2 mutant has no detectable mMDH activity but is viable, albeit small and slow growing. Quantitative proteome analysis of mitochondria shows changes in other mitochondrial NAD-linked dehydrogenases, indicating a reorganization of such enzymes in the mitochondrial matrix. The slow-growing mmdh1mmdh2 mutant has elevated leaf respiration rate in the dark and light, without loss of photosynthetic capacity, suggesting that mMDH normally uses NADH to reduce oxaloacetate to malate, which is then exported to the cytosol, rather than to drive mitochondrial respiration. Increased respiratory rate in leaves can account in part for the low net CO(2) assimilation and slow growth rate of mmdh1mmdh2. Loss of mMDH also affects photorespiration, as evidenced by a lower postillumination burst, alterations in CO(2) assimilation/intercellular CO(2) curves at low CO(2), and the light-dependent elevated concentration of photorespiratory metabolites. Complementation of mmdh1mmdh2 with an mMDH cDNA recovered mMDH activity, suppressed respiratory rate, ameliorated changes to photorespiration, and increased plant growth. A previously established inverse correlation between mMDH and ascorbate content in tomato (Solanum lycopersicum) has been consolidated in Arabidopsis and may potentially be linked to decreased galactonolactone dehydrogenase content in mitochondria in the mutant. Overall, a central yet complex role for mMDH emerges in the partitioning of carbon and energy in leaves, providing new directions for bioengineering of plant growth rate and a new insight into the molecular mechanisms linking respiration and photosynthesis in plants.
苹果酸脱氢酶(MDH)催化中心代谢物和细胞器间的还原态平衡中依赖 NAD(+)的可逆脱氢反应。为了探索线粒体 MDH(mMDH)在拟南芥(Arabidopsis thaliana)中的作用,构建并分析了高度表达的 mMDH1 和低表达的 mMDH2 同工型的单突变体和双突变体。mmdh1mmdh2 突变体几乎检测不到 mMDH 活性,但仍具有活力,尽管植株较小且生长缓慢。线粒体的定量蛋白质组分析显示其他与 NAD 相关的线粒体脱氢酶发生变化,表明这些酶在线粒体基质中重新组合。生长缓慢的 mmdh1mmdh2 突变体在黑暗和光照下的叶片呼吸速率升高,但光合能力没有丧失,这表明 mMDH 通常利用 NADH 将草酰乙酸还原为苹果酸,然后将其输出到细胞质,而不是驱动线粒体呼吸。叶片呼吸速率的增加部分解释了 mmdh1mmdh2 突变体净 CO2 同化率低和生长缓慢的原因。mMDH 的缺失也会影响光呼吸,表现在照光后爆发较低、在低 CO2 下 CO2 同化/细胞间 CO2 曲线发生改变以及光依赖性光呼吸代谢物浓度升高。用 mMDH cDNA 互补 mmdh1mmdh2 恢复了 mMDH 活性,抑制了呼吸速率,改善了光呼吸的变化,并增加了植物的生长。番茄(Solanum lycopersicum)中先前建立的 mMDH 与抗坏血酸含量的反比关系在拟南芥中得到了巩固,并且可能与突变体中线粒体中半乳糖酸内酯脱氢酶含量的降低有关。总的来说,mMDH 在叶片中碳和能量的分配中发挥着核心而复杂的作用,为植物生长速率的生物工程提供了新的方向,并为呼吸作用和光合作用之间的分子机制提供了新的见解。