Department of Medical Biochemistry, Semmelweis University, Budapest, Hungary.
J Gen Physiol. 2010 Oct;136(4):407-23. doi: 10.1085/jgp.201010434.
The chloride ion channel cystic fibrosis transmembrane conductance regulator (CFTR) displays a typical adenosine trisphosphate (ATP)-binding cassette (ABC) protein architecture comprising two transmembrane domains, two intracellular nucleotide-binding domains (NBDs), and a unique intracellular regulatory domain. Once phosphorylated in the regulatory domain, CFTR channels can open and close when supplied with cytosolic ATP. Despite the general agreement that formation of a head-to-tail NBD dimer drives the opening of the chloride ion pore, little is known about how ATP binding to individual NBDs promotes subsequent formation of this stable dimer. Structural studies on isolated NBDs suggest that ATP binding induces an intra-domain conformational change termed "induced fit," which is required for subsequent dimerization. We investigated the allosteric interaction between three residues within NBD2 of CFTR, F1296, N1303, and R1358, because statistical coupling analysis suggests coevolution of these positions, and because in crystal structures of ABC domains, interactions between these positions appear to be modulated by ATP binding. We expressed wild-type as well as F1296S, N1303Q, and R1358A mutant CFTR in Xenopus oocytes and studied these channels using macroscopic inside-out patch recordings. Thermodynamic mutant cycles were built on several kinetic parameters that characterize individual steps in the gating cycle, such as apparent affinities for ATP, open probabilities in the absence of ATP, open probabilities in saturating ATP in a mutant background (K1250R), which precludes ATP hydrolysis, as well as the rates of nonhydrolytic closure. Our results suggest state-dependent changes in coupling between two of the three positions (1296 and 1303) and are consistent with a model that assumes a toggle switch-like interaction pattern during the intra-NBD2 induced fit in response to ATP binding. Stabilizing interactions of F1296 and N1303 present before ATP binding are replaced by a single F1296-N1303 contact in ATP-bound states, with similar interaction partner toggling occurring during the much rarer ATP-independent spontaneous openings.
氯离子通道囊性纤维化跨膜电导调节因子(CFTR)呈现出典型的三磷酸腺苷(ATP)结合盒(ABC)蛋白结构,包括两个跨膜结构域、两个细胞内核苷酸结合域(NBD)和一个独特的细胞内调节域。一旦在调节域中磷酸化,CFTR 通道在提供细胞溶质 ATP 时可以打开和关闭。尽管普遍认为头对头 NBD 二聚体的形成驱动氯离子孔的打开,但对于 ATP 结合到单个 NBD 如何促进随后形成这种稳定二聚体知之甚少。对分离的 NBD 进行的结构研究表明,ATP 结合诱导一种称为“诱导契合”的域内构象变化,这对于随后的二聚化是必需的。我们研究了 CFTR NBD2 内三个残基 F1296、N1303 和 R1358 之间的变构相互作用,因为统计耦合分析表明这些位置的共同进化,并且在 ABC 结构域的晶体结构中,这些位置之间的相互作用似乎受 ATP 结合的调节。我们在非洲爪蟾卵母细胞中表达了野生型以及 F1296S、N1303Q 和 R1358A 突变 CFTR,并使用宏观内外补丁记录研究了这些通道。热力学突变循环构建在几个动力学参数上,这些参数描述了门控循环中的各个步骤,例如对 ATP 的表观亲和力、在没有 ATP 的情况下的开放概率、在突变背景下(K1250R)饱和 ATP 中的开放概率,这排除了 ATP 水解,以及非水解关闭的速率。我们的结果表明,在三个位置中的两个(1296 和 1303)之间存在状态依赖性的耦合变化,并且与假设在 ATP 结合时 NBD2 内诱导契合期间存在拨动开关样相互作用模式的模型一致。在 ATP 结合之前存在的 F1296 和 N1303 的稳定相互作用被 ATP 结合状态下的单个 F1296-N1303 接触所取代,在更罕见的 ATP 独立自发开放过程中也发生了类似的相互作用伙伴切换。