Xie Yuchen, Vemuri Baba C, Ho Jeffrey
Department of Computer and Information Sciences and Engineering, University of Florida, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):682-9. doi: 10.1007/978-3-642-15705-9_83.
In this paper, we propose a Riemannian framework for statistical analysis of tensor fields. Existing approaches to this problem have been mainly voxel-based that overlook the correlation between tensors at different voxels. In our approach, the tensor fields are considered as points in a high-dimensional Riemannian product space and accordingly, we extend Principal Geodesic Analysis (PGA) to the product space. This provides us with a principled method for linearizing the problem, and coupled with the usual log-exp maps that relate points on manifold to tangent vectors, the global correlation of the tensor field can be captured using Principal Component Analysis in a tangent space. Using the proposed method, the modes of variation of tensor fields can be efficiently determined, and dimension reduction of the data is also easily implemented. Experimental results on characterizing the variation of a large set of tensor fields are presented in the paper, and results on classifying tensor fields using the proposed method are also reported. These preliminary experimental results demonstrate the advantages of our method over the voxel-based approach.
在本文中,我们提出了一种用于张量场统计分析的黎曼框架。解决该问题的现有方法主要基于体素,忽略了不同体素处张量之间的相关性。在我们的方法中,张量场被视为高维黎曼积空间中的点,相应地,我们将主测地线分析(PGA)扩展到积空间。这为我们提供了一种将问题线性化的有原则的方法,并且结合将流形上的点与切向量相关联的常用对数-指数映射,可以在切空间中使用主成分分析来捕获张量场的全局相关性。使用所提出的方法,可以有效地确定张量场的变化模式,并且数据降维也很容易实现。本文给出了表征大量张量场变化的实验结果,并且还报告了使用所提出的方法对张量场进行分类的结果。这些初步实验结果证明了我们的方法相对于基于体素的方法的优势。