Suppr超能文献

张量场的统计分析。

Statistical analysis of tensor fields.

作者信息

Xie Yuchen, Vemuri Baba C, Ho Jeffrey

机构信息

Department of Computer and Information Sciences and Engineering, University of Florida, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 1):682-9. doi: 10.1007/978-3-642-15705-9_83.

Abstract

In this paper, we propose a Riemannian framework for statistical analysis of tensor fields. Existing approaches to this problem have been mainly voxel-based that overlook the correlation between tensors at different voxels. In our approach, the tensor fields are considered as points in a high-dimensional Riemannian product space and accordingly, we extend Principal Geodesic Analysis (PGA) to the product space. This provides us with a principled method for linearizing the problem, and coupled with the usual log-exp maps that relate points on manifold to tangent vectors, the global correlation of the tensor field can be captured using Principal Component Analysis in a tangent space. Using the proposed method, the modes of variation of tensor fields can be efficiently determined, and dimension reduction of the data is also easily implemented. Experimental results on characterizing the variation of a large set of tensor fields are presented in the paper, and results on classifying tensor fields using the proposed method are also reported. These preliminary experimental results demonstrate the advantages of our method over the voxel-based approach.

摘要

在本文中,我们提出了一种用于张量场统计分析的黎曼框架。解决该问题的现有方法主要基于体素,忽略了不同体素处张量之间的相关性。在我们的方法中,张量场被视为高维黎曼积空间中的点,相应地,我们将主测地线分析(PGA)扩展到积空间。这为我们提供了一种将问题线性化的有原则的方法,并且结合将流形上的点与切向量相关联的常用对数-指数映射,可以在切空间中使用主成分分析来捕获张量场的全局相关性。使用所提出的方法,可以有效地确定张量场的变化模式,并且数据降维也很容易实现。本文给出了表征大量张量场变化的实验结果,并且还报告了使用所提出的方法对张量场进行分类的结果。这些初步实验结果证明了我们的方法相对于基于体素的方法的优势。

相似文献

1
Statistical analysis of tensor fields.张量场的统计分析。
Med Image Comput Comput Assist Interv. 2010;13(Pt 1):682-9. doi: 10.1007/978-3-642-15705-9_83.
3
Improved segmentation of white matter tracts with adaptive Riemannian metrics.基于自适应黎曼度量的白质束分割改进。
Med Image Anal. 2014 Jan;18(1):161-75. doi: 10.1016/j.media.2013.10.007. Epub 2013 Oct 25.
6
Seamless warping of diffusion tensor fields.扩散张量场的无缝扭曲
IEEE Trans Med Imaging. 2008 Mar;27(3):285-99. doi: 10.1109/TMI.2007.901428.
8
Riemannian manifold learning.黎曼流形学习
IEEE Trans Pattern Anal Mach Intell. 2008 May;30(5):796-809. doi: 10.1109/TPAMI.2007.70735.

引用本文的文献

2
Quantifying Tensor Field Similarity With Global Distributions and Optimal Transport.利用全局分布和最优传输量化张量场相似性
Med Image Comput Comput Assist Interv. 2018 Sep;11071:428-436. doi: 10.1007/978-3-030-00934-2_48. Epub 2018 Sep 26.
4
Riemannian Nonlinear Mixed Effects Models: Analyzing Longitudinal Deformations in Neuroimaging.黎曼非线性混合效应模型:分析神经影像学中的纵向变形
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2017 Jul;2017:5777-5786. doi: 10.1109/CVPR.2017.612. Epub 2017 Nov 9.
7
Manifold-valued Dirichlet Processes.流形值狄利克雷过程
JMLR Workshop Conf Proc. 2015 Jul;2015:1199-1208.
10
Uncertainty Visualization in HARDI based on Ensembles of ODFs.基于ODF集合的HARDI中的不确定性可视化
IEEE Pac Vis Symp. 2012 Dec 31;2013:193-200. doi: 10.1109/PacificVis.2012.6183591.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验