Suppr超能文献

递归格林函数配准

Recursive Green's function registration.

作者信息

Beuthien Björn, Kamen Ali, Fischer Bernd

机构信息

institute of Mathematics and Image Computing, University of Lübeck, Germany.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 2):546-53.

Abstract

Non-parametric image registration is still among the most challenging problems in both computer vision and medical imaging. Here, one tries to minimize a joint functional that is comprised of a similarity measure and a regularizer in order to obtain a reasonable displacement field that transforms one image to the other. A common way to solve this problem is to formulate a necessary condition for an optimizer, which in turn leads to a system of partial differential equations (PDEs). In general, the most time consuming part of the registration task is to find a numerical solution for such a system. In this paper, we present a generalized and efficient numerical scheme for solving such PDEs simply by applying 1-dimensional recursive filtering to the right hand side of the system based on the Green's function of the differential operator that corresponds to the chosen regularizer. So in the end we come up with a general linear algorithm. We present the associated Green's function for the diffusive and curvature regularizers and show how one may efficiently implement the whole process by using recursive filter approximation. Finally, we demonstrate the capability of the proposed method on realistic examples.

摘要

非参数图像配准仍然是计算机视觉和医学成像中最具挑战性的问题之一。在此,人们试图最小化一个由相似性度量和正则化项组成的联合泛函,以便获得一个合理的位移场,将一幅图像变换为另一幅图像。解决这个问题的常用方法是为优化器制定一个必要条件,这反过来会导致一个偏微分方程组(PDEs)。一般来说,配准任务中最耗时的部分是为这样一个系统找到数值解。在本文中,我们基于与所选正则化器对应的微分算子的格林函数,通过对系统右侧应用一维递归滤波,提出了一种广义且高效的数值方案来求解此类PDEs。所以最终我们得到了一个通用的线性算法。我们给出了扩散正则化器和曲率正则化器的相关格林函数,并展示了如何通过使用递归滤波器近似有效地实现整个过程。最后,我们在实际例子中展示了所提方法的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验