Suppr超能文献

基于密集位移采样的最小生成树上的全局最优可变形配准。

Globally optimal deformable registration on a minimum spanning tree using dense displacement sampling.

作者信息

Heinrich Mattias P, Jenkinson Mark, Schnabel Julia A

机构信息

Institute of Biomedical Engineering, University of Oxford, UK.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 3):115-22. doi: 10.1007/978-3-642-33454-2_15.

Abstract

Deformable image registration poses a highly non-convex optimisation problem. Conventionally, medical image registration techniques rely on continuous optimisation, which is prone to local minima. Recent advances in the mathematics and new programming methods enable these disadvantages to be overcome using discrete optimisation. In this paper, we present a new technique deeds, which employs a discrete dense displacement sampling for the deformable registration of high resolution CT volumes. The image grid is represented as a minimum spanning tree. Given these constraints a global optimum of the cost function can be found efficiently using dynamic programming, which enforces the smoothness of the deformations. Experimental results demonstrate the advantages of deeds: the registration error for the challenging registration of inhale and exhale pulmonary CT scans is significantly lower than for two state-of-the-art registration techniques, especially in the presence of large deformations and sliding motion at lung surfaces.

摘要

可变形图像配准带来了一个高度非凸的优化问题。传统上,医学图像配准技术依赖于连续优化,这容易陷入局部最小值。数学和新编程方法的最新进展使得使用离散优化能够克服这些缺点。在本文中,我们提出了一种新的技术 deeds,它采用离散密集位移采样来对高分辨率 CT 体积进行可变形配准。图像网格被表示为最小生成树。在这些约束条件下,使用动态规划可以有效地找到成本函数的全局最优解,这能确保变形的平滑性。实验结果证明了 deeds 的优势:对于吸气和呼气肺部 CT 扫描这种具有挑战性的配准,其配准误差明显低于两种最先进的配准技术,特别是在肺表面存在大变形和滑动运动的情况下。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验