Miri Mohammad Saleh, Abràmoff Michael D, Lee Kyungmoo, Niemeijer Meindert, Wang Jui-Kai, Kwon Young H, Garvin Mona K
IEEE Trans Med Imaging. 2015 Sep;34(9):1854-66. doi: 10.1109/TMI.2015.2412881. Epub 2015 Mar 13.
In this work, a multimodal approach is proposed to use the complementary information from fundus photographs and spectral domain optical coherence tomography (SD-OCT) volumes in order to segment the optic disc and cup boundaries. The problem is formulated as an optimization problem where the optimal solution is obtained using a machine-learning theoretical graph-based method. In particular, first the fundus photograph is registered to the 2D projection of the SD-OCT volume. Three in-region cost functions are designed using a random forest classifier corresponding to three regions of cup, rim, and background. Next, the volumes are resampled to create radial scans in which the Bruch's Membrane Opening (BMO) endpoints are easier to detect. Similar to in-region cost function design, the disc-boundary cost function is designed using a random forest classifier for which the features are created by applying the Haar Stationary Wavelet Transform (SWT) to the radial projection image. A multisurface graph-based approach utilizes the in-region and disc-boundary cost images to segment the boundaries of optic disc and cup under feasibility constraints. The approach is evaluated on 25 multimodal image pairs from 25 subjects in a leave-one-out fashion (by subject). The performances of the graph-theoretic approach using three sets of cost functions are compared: 1) using unimodal (OCT only) in-region costs, 2) using multimodal in-region costs, and 3) using multimodal in-region and disc-boundary costs. Results show that the multimodal approaches outperform the unimodal approach in segmenting the optic disc and cup.
在这项工作中,提出了一种多模态方法,利用眼底照片和光谱域光学相干断层扫描(SD - OCT)体积中的互补信息来分割视盘和视杯边界。该问题被表述为一个优化问题,其中最优解通过基于机器学习理论的图方法获得。具体而言,首先将眼底照片配准到SD - OCT体积的二维投影上。使用对应于视杯、视盘边缘和背景三个区域的随机森林分类器设计了三个区域内成本函数。接下来,对体积进行重采样以创建径向扫描,在其中更容易检测到布鲁赫膜开口(BMO)端点。与区域内成本函数设计类似,视盘边界成本函数使用随机森林分类器设计,其特征通过将哈尔平稳小波变换(SWT)应用于径向投影图像来创建。基于多表面图的方法利用区域内和视盘边界成本图像在可行性约束下分割视盘和视杯的边界。该方法以留一法(按受试者)在来自25名受试者的25对多模态图像上进行评估。比较了使用三组成本函数的图论方法的性能:1)使用单模态(仅OCT)区域内成本,2)使用多模态区域内成本,以及3)使用多模态区域内和视盘边界成本。结果表明,在分割视盘和视杯方面,多模态方法优于单模态方法。