Li Ruijiang, Jia Xun, Lewis John H, Gu Xuejun, Folkerts Michael, Men Chunhua, Jiang Steve B
Department of Radiation Oncology, University of California San Diego 3855 Health Sciences Dr. 0843, La Jolla, CA 92037, USA.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):449-56. doi: 10.1007/978-3-642-15711-0_56.
We have developed an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image. We first parameterize the deformation vector fields (DVF) of lung motion by principal component analysis (PCA). Then we optimize the DVF applied to a reference image by adapting the PCA coefficients such that the simulated projection of the reconstructed image matches the measured projection. The algorithm was tested on a digital phantom as well as patient data. The average relative image reconstruction error and 3D tumor localization error for the phantom is 7.5% and 0.9 mm, respectively. The tumor localization error for patient is approximately 2 mm. The computation time of reconstructing one volumetric image from each projection is around 0.2 and 0.3 seconds for phantom and patient, respectively, on an NVIDIA C1060 GPU. Clinical application can potentially lead to accurate 3D tumor tracking from a single imager.
我们基于单张X射线投影图像开发了一种用于实时体积图像重建和三维肿瘤定位的算法。我们首先通过主成分分析(PCA)对肺部运动的变形矢量场(DVF)进行参数化。然后,通过调整PCA系数来优化应用于参考图像的DVF,以使重建图像的模拟投影与测量投影相匹配。该算法在数字模型以及患者数据上进行了测试。模型的平均相对图像重建误差和三维肿瘤定位误差分别为7.5%和0.9毫米。患者的肿瘤定位误差约为2毫米。在NVIDIA C1060 GPU上,从每个投影重建一幅体积图像的计算时间,对于模型和患者分别约为0.2秒和0.3秒。临床应用有可能实现从单个成像仪进行精确的三维肿瘤跟踪。