Suppr超能文献

通过实时容积 X 射线成像进行肺癌放射治疗的三维肿瘤定位。

3D tumor localization through real-time volumetric x-ray imaging for lung cancer radiotherapy.

机构信息

Center for Advanced Radiotherapy Technologies and Department of Radiation Oncology, University of California San Diego, La Jolla, California 92037, USA.

出版信息

Med Phys. 2011 May;38(5):2783-94. doi: 10.1118/1.3582693.

Abstract

PURPOSE

To evaluate an algorithm for real-time 3D tumor localization from a single x-ray projection image for lung cancer radiotherapy.

METHODS

Recently, we have developed an algorithm for reconstructing volumetric images and extracting 3D tumor motion information from a single x-ray projection [Li et al., Med. Phys. 37, 2822-2826 (2010)]. We have demonstrated its feasibility using a digital respiratory phantom with regular breathing patterns. In this work, we present a detailed description and a comprehensive evaluation of the improved algorithm. The algorithm was improved by incorporating respiratory motion prediction. The accuracy and efficiency of using this algorithm for 3D tumor localization were then evaluated on (1) a digital respiratory phantom, (2) a physical respiratory phantom, and (3) five lung cancer patients. These evaluation cases include both regular and irregular breathing patterns that are different from the training dataset.

RESULTS

For the digital respiratory phantom with regular and irregular breathing, the average 3D tumor localization error is less than 1 mm which does not seem to be affected by amplitude change, period change, or baseline shift. On an NVIDIA Tesla C1060 graphic processing unit (GPU) card, the average computation time for 3D tumor localization from each projection ranges between 0.19 and 0.26 s, for both regular and irregular breathing, which is about a 10% improvement over previously reported results. For the physical respiratory phantom, an average tumor localization error below 1 mm was achieved with an average computation time of 0.13 and 0.16 s on the same graphic processing unit (GPU) card, for regular and irregular breathing, respectively. For the five lung cancer patients, the average tumor localization error is below 2 mm in both the axial and tangential directions. The average computation time on the same GPU card ranges between 0.26 and 0.34 s.

CONCLUSIONS

Through a comprehensive evaluation of our algorithm, we have established its accuracy in 3D tumor localization to be on the order of 1 mm on average and 2 mm at 95 percentile for both digital and physical phantoms, and within 2 mm on average and 4 mm at 95 percentile for lung cancer patients. The results also indicate that the accuracy is not affected by the breathing pattern, be it regular or irregular. High computational efficiency can be achieved on GPU, requiring 0.1-0.3 s for each x-ray projection.

摘要

目的

评估一种用于肺癌放射治疗的从单次 X 射线投影图像实时重建三维肿瘤位置的算法。

方法

最近,我们开发了一种从单次 X 射线投影重建体积图像并提取三维肿瘤运动信息的算法[Li 等人,医学物理学 37,2822-2826(2010)]。我们使用具有规则呼吸模式的数字呼吸体模证明了其可行性。在这项工作中,我们详细描述并全面评估了改进的算法。通过纳入呼吸运动预测,改进了该算法。然后,在(1)数字呼吸体模、(2)物理呼吸体模和(3)五名肺癌患者上评估了该算法用于三维肿瘤定位的准确性和效率。这些评估案例包括与训练数据集不同的规则和不规则呼吸模式。

结果

对于具有规则和不规则呼吸的数字呼吸体模,平均三维肿瘤定位误差小于 1mm,似乎不受幅度变化、周期变化或基线偏移的影响。在 NVIDIA Tesla C1060 图形处理单元 (GPU) 卡上,对于规则和不规则呼吸,从每个投影进行三维肿瘤定位的平均计算时间在 0.19 到 0.26s 之间,比之前的报告结果提高了约 10%。对于物理呼吸体模,在相同的 GPU 卡上,对于规则和不规则呼吸,平均肿瘤定位误差低于 1mm,平均计算时间分别为 0.13 和 0.16s。对于五名肺癌患者,在轴向和切向方向上的平均肿瘤定位误差均低于 2mm。在相同的 GPU 卡上,平均计算时间在 0.26 到 0.34s 之间。

结论

通过对我们的算法进行全面评估,我们确定其在数字和物理体模上的三维肿瘤定位平均精度约为 1mm,95%置信区间为 2mm,在肺癌患者中的平均精度约为 2mm,95%置信区间为 4mm。结果还表明,准确性不受呼吸模式的影响,无论是规则还是不规则。在 GPU 上可以实现高效率的计算,每个 X 射线投影需要 0.1-0.3s。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验