Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America.
Phys Med Biol. 2019 Aug 21;64(16):165016. doi: 10.1088/1361-6560/ab359a.
To predict real-time 3D deformation field maps (DFMs) using Volumetric Cine MRI (VC-MRI) and adaptive boosting and multi-layer perceptron neural network (ADMLP-NN) for 4D target tracking. One phase of a prior 4D-MRI is set as the prior phase, MRI. Principal component analysis (PCA) is used to extract three major respiratory deformation modes from the DFMs generated between the prior and remaining phases. VC-MRI at each time-step is considered a deformation of MRI, where the DFM is represented as a weighted linear combination of the PCA components. The PCA weightings are solved by minimizing the differences between on-board 2D cine MRI and its corresponding VC-MRI slice. The PCA weightings solved during the initial training period are used to train an ADMLP-NN to predict PCA weightings ahead of time during the prediction period. The predicted PCA weightings are used to build predicted 3D DFM and ultimately, predicted VC-MRIs for 4D target tracking. The method was evaluated using a 4D computerized phantom (XCAT) with patient breathing curves and MRI data from a real liver cancer patient. Effects of breathing amplitude change and ADMLP-NN parameter variations were assessed. The accuracy of the PCA curve prediction was evaluated. The predicted real-time 3D tumor was evaluated against the ground-truth using volume dice coefficient (VDC), center-of-mass-shift (COMS), and target tracking errors. For the XCAT study, the average VDC and COMS for the predicted tumor were 0.92 ± 0.02 and 1.06 ± 0.40 mm, respectively, across all predicted time-steps. The correlation coefficients between predicted and actual PCA curves generated through VC-MRI estimation for the 1st/2nd principal components were 0.98/0.89 and 0.99/0.57 in the SI and AP directions, respectively. The optimal number of input neurons, hidden neurons, and MLP-NN for ADMLP-NN PCA weighting coefficient prediction were determined to be 7, 4, and 10, respectively. The optimal cost function threshold was determined to be 0.05. PCA weighting coefficient and VC-MRI accuracy was reduced for increased prediction-step size. Accurate PCA weighting coefficient prediction correlated with accurate VC-MRI prediction. For the patient study, the predicted 4D tumor tracking errors in superior-inferior, anterior-posterior and lateral directions were 0.50 ± 0.47 mm, 0.40 ± 0.55 mm, and 0.28 ± 0.12 mm, respectively. Preliminary studies demonstrated the feasibility to use VC-MRI and artificial neural networks to predict real-time 3D DFMs of the tumor for 4D target tracking.
使用容积电影 MRI(VC-MRI)和自适应提升和多层感知机神经网络(ADMLP-NN)预测实时 3D 变形场图(DFM),用于 4D 目标跟踪。将先前的 4D-MRI 的一个相位设置为先前相位,MRI。主成分分析(PCA)用于从先前相位和剩余相位之间生成的 DFM 中提取三个主要呼吸变形模式。每个时间步的 VC-MRI 被认为是 MRI 的变形,其中 DFM 表示为 PCA 分量的加权线性组合。通过最小化机载 2D 电影 MRI 与其对应的 VC-MRI 切片之间的差异来求解 PCA 加权。在初始训练期间求解的 PCA 加权用于在预测期间提前训练 ADMLP-NN 以预测 PCA 加权。预测的 PCA 加权用于构建预测的 3D DFM,并最终用于 4D 目标跟踪的预测 VC-MRI。该方法使用具有患者呼吸曲线和来自真实肝癌患者的 MRI 数据的 4D 计算机化体模(XCAT)进行了评估。评估了呼吸幅度变化和 ADMLP-NN 参数变化的影响。评估了 PCA 曲线预测的准确性。使用体积骰子系数(VDC)、质心位移(COMS)和目标跟踪误差,将预测的实时 3D 肿瘤与真实肿瘤进行了比较。对于 XCAT 研究,在所有预测时间步中,预测肿瘤的平均 VDC 和 COMS 分别为 0.92±0.02 和 1.06±0.40mm。通过 VC-MRI 估计生成的预测和实际 PCA 曲线之间的第 1/2 主成分的相关系数分别为 SI 和 AP 方向的 0.98/0.89 和 0.99/0.57。确定 ADMLP-NN PCA 加权系数预测的最佳输入神经元、隐藏神经元和 MLP-NN 数量分别为 7、4 和 10。确定最佳成本函数阈值为 0.05。随着预测步长的增加,PCA 加权系数和 VC-MRI 的准确性降低。准确的 PCA 加权系数预测与准确的 VC-MRI 预测相关。对于患者研究,上/下、前/后和侧方向的预测 4D 肿瘤跟踪误差分别为 0.50±0.47mm、0.40±0.55mm 和 0.28±0.12mm。初步研究表明,使用 VC-MRI 和人工神经网络预测肿瘤的实时 3D DFM 用于 4D 目标跟踪是可行的。