Suppr超能文献

用于解开物体的形态学引导图搜索:秀丽隐杆线虫分析。

Morphology-guided graph search for untangling objects: C. elegans analysis.

作者信息

Raviv Tammy Riklin, Ljosa V, Conery A L, Ausubel F M, Carpenter A E, Golland P, Wählby C

机构信息

Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2010;13(Pt 3):634-41. doi: 10.1007/978-3-642-15711-0_79.

Abstract

We present a novel approach for extracting cluttered objects based on their morphological properties. Specifically, we address the problem of untangling Caenorhabditis elegans clusters in high-throughput screening experiments. We represent the skeleton of each worm cluster by a sparse directed graph whose vertices and edges correspond to worm segments and their adjacencies, respectively. We then search for paths in the graph that are most likely to represent worms while minimizing overlap. The worm likelihood measure is defined on a low-dimensional feature space that captures different worm poses, obtained from a training set of isolated worms. We test the algorithm on 236 microscopy images, each containing 15 C. elegans worms, and demonstrate successful cluster untangling and high worm detection accuracy.

摘要

我们提出了一种基于形态学特性提取杂乱物体的新方法。具体而言,我们解决了在高通量筛选实验中解开秀丽隐杆线虫簇的问题。我们用一个稀疏有向图来表示每个线虫簇的骨架,该图的顶点和边分别对应线虫的节段及其邻接关系。然后,我们在图中搜索最有可能代表线虫的路径,同时尽量减少重叠。线虫可能性度量是在一个低维特征空间上定义的,该空间捕捉从一组孤立线虫的训练集中获得的不同线虫姿态。我们在236张显微镜图像上测试了该算法,每张图像包含15条秀丽隐杆线虫,并展示了成功的簇解开和高线虫检测准确率。

相似文献

1
Morphology-guided graph search for untangling objects: C. elegans analysis.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):634-41. doi: 10.1007/978-3-642-15711-0_79.
2
Active graph matching for automatic joint segmentation and annotation of C. elegans.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):81-8. doi: 10.1007/978-3-319-10404-1_11.
3
Tracking the swimming motions of C. elegans worms with applications in aging studies.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):35-42. doi: 10.1007/978-3-540-85988-8_5.
4
Straightening Caenorhabditis elegans images.
Bioinformatics. 2008 Jan 15;24(2):234-42. doi: 10.1093/bioinformatics/btm569. Epub 2007 Nov 19.
5
Three-dimensional surface mesh segmentation using curvedness-based region growing approach.
IEEE Trans Pattern Anal Mach Intell. 2007 Dec;29(12):2195-204. doi: 10.1109/TPAMI.2007.1125.
6
An image analysis toolbox for high-throughput C. elegans assays.
Nat Methods. 2012 Apr 22;9(7):714-6. doi: 10.1038/nmeth.1984.
7
Path similarity skeleton graph matching.
IEEE Trans Pattern Anal Mach Intell. 2008 Jul;30(7):1282-92. doi: 10.1109/TPAMI.2007.70769.
8
Automatic segmentation of colon glands using object-graphs.
Med Image Anal. 2010 Feb;14(1):1-12. doi: 10.1016/j.media.2009.09.001. Epub 2009 Sep 19.
9
Coupled minimum-cost flow cell tracking.
Inf Process Med Imaging. 2009;21:374-85. doi: 10.1007/978-3-642-02498-6_31.
10
Methods for fine registration of cadastre graphs to images.
IEEE Trans Pattern Anal Mach Intell. 2007 Nov;29(11):1990-2000. doi: 10.1109/TPAMI.2007.1108.

引用本文的文献

1
KnotResolver: tracking self-intersecting filaments in microscopy using directed graphs.
Bioinformatics. 2024 Sep 2;40(9). doi: 10.1093/bioinformatics/btae538.
2
Imaging and Fluorescence Quantification in with Flow Vermimetry and Automated Microscopy.
Bio Protoc. 2021 May 20;11(10):e4024. doi: 10.21769/BioProtoc.4024.
5
Shape mode analysis exposes movement patterns in biology: flagella and flatworms as case studies.
PLoS One. 2014 Nov 26;9(11):e113083. doi: 10.1371/journal.pone.0113083. eCollection 2014.
6
High- and low-throughput scoring of fat mass and body fat distribution in C. elegans.
Methods. 2014 Aug 1;68(3):492-9. doi: 10.1016/j.ymeth.2014.04.017. Epub 2014 Apr 28.
7
EXTRACTING BIOMEDICALLY IMPORTANT INFORMATION FROM LARGE, AUTOMATED IMAGING EXPERIMENTS.
Proc IEEE Int Symp Biomed Imaging. 2011:1723-1726. doi: 10.1109/ISBI.2011.5872737.
8
Region-based progressive localization of cell nuclei in microscopic images with data adaptive modeling.
BMC Bioinformatics. 2013 Jun 2;14:173. doi: 10.1186/1471-2105-14-173.
9
An image analysis toolbox for high-throughput C. elegans assays.
Nat Methods. 2012 Apr 22;9(7):714-6. doi: 10.1038/nmeth.1984.
10
WormScan: a technique for high-throughput phenotypic analysis of Caenorhabditis elegans.
PLoS One. 2012;7(3):e33483. doi: 10.1371/journal.pone.0033483. Epub 2012 Mar 23.

本文引用的文献

1
RESOLVING CLUSTERED WORMS VIA PROBABILISTIC SHAPE MODELS.
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010(14-17 April 2010):552-555. doi: 10.1109/ISBI.2010.5490286.
2
A 3D digital atlas of C. elegans and its application to single-cell analyses.
Nat Methods. 2009 Sep;6(9):667-72. doi: 10.1038/nmeth.1366. Epub 2009 Aug 16.
3
High-throughput screen for novel antimicrobials using a whole animal infection model.
ACS Chem Biol. 2009 Jul 17;4(7):527-33. doi: 10.1021/cb900084v.
4
Tracking the swimming motions of C. elegans worms with applications in aging studies.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):35-42. doi: 10.1007/978-3-540-85988-8_5.
5
Automated analysis of embryonic gene expression with cellular resolution in C. elegans.
Nat Methods. 2008 Aug;5(8):703-9. doi: 10.1038/nmeth.1228. Epub 2008 Jun 29.
7
Brain anatomical structure segmentation by hybrid discriminative/generative models.
IEEE Trans Med Imaging. 2008 Apr;27(4):495-508. doi: 10.1109/TMI.2007.908121.
8
Dimensionality and dynamics in the behavior of C. elegans.
PLoS Comput Biol. 2008 Apr 25;4(4):e1000028. doi: 10.1371/journal.pcbi.1000028.
9
A hierarchical algorithm for MR brain image parcellation.
IEEE Trans Med Imaging. 2007 Sep;26(9):1201-12. doi: 10.1109/TMI.2007.901433.
10
Caenorhabditis elegans: a versatile platform for drug discovery.
Biotechnol J. 2006 Dec;1(12):1405-18. doi: 10.1002/biot.200600176.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验