Suppr超能文献

通过概率形状模型解析聚集蠕虫

RESOLVING CLUSTERED WORMS VIA PROBABILISTIC SHAPE MODELS.

作者信息

Wählby Carolina, Riklin-Raviv Tammy, Ljosa Vebjorn, Conery Annie L, Golland Polina, Ausubel Frederick M, Carpenter Anne E

机构信息

Imaging Platform, Broad Institute of MIT and Harvard, Cambridge, MA.

出版信息

Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010(14-17 April 2010):552-555. doi: 10.1109/ISBI.2010.5490286.

Abstract

The roundworm Caenorhabditis elegans is an effective model system for biological processes such as immunity, behavior, and metabolism. Robotic sample preparation together with automated microscopy and image analysis has recently enabled high-throughput screening experiments using C. elegans. So far, such experiments have been limited to per-image measurements due to the tendency of the worms to cluster, which prevents extracting features from individual animals.We present a novel approach for the extraction of individual C. elegans from clusters of worms in high-throughput microscopy images. The key ideas are the construction of a low-dimensional shape-descriptor space and the definition of a probability measure on it. Promising segmentation results are shown.

摘要

蛔虫秀丽隐杆线虫是用于免疫、行为和新陈代谢等生物过程的有效模型系统。机器人样本制备与自动显微镜和图像分析相结合,最近使得使用秀丽隐杆线虫进行高通量筛选实验成为可能。到目前为止,由于线虫倾向于聚集,此类实验仅限于逐图像测量,这阻碍了从单个动物中提取特征。我们提出了一种从高通量显微镜图像中的线虫群中提取单个秀丽隐杆线虫的新方法。关键思想是构建一个低维形状描述符空间并在其上定义一个概率测度。展示了有前景的分割结果。

相似文献

1
RESOLVING CLUSTERED WORMS VIA PROBABILISTIC SHAPE MODELS.
Proc IEEE Int Symp Biomed Imaging. 2010 Jun 21;2010(14-17 April 2010):552-555. doi: 10.1109/ISBI.2010.5490286.
2
Morphology-guided graph search for untangling objects: C. elegans analysis.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):634-41. doi: 10.1007/978-3-642-15711-0_79.
3
Automatically tracking feeding behavior in populations of foraging .
Elife. 2022 Sep 9;11:e77252. doi: 10.7554/eLife.77252.
4
SegElegans: Instance segmentation using dual convolutional recurrent neural network decoder in Caenorhabditis elegans microscopic images.
Comput Biol Med. 2025 May;190:110012. doi: 10.1016/j.compbiomed.2025.110012. Epub 2025 Mar 21.
6
Biologically constrained optimization based cell membrane segmentation in C. elegans embryos.
BMC Bioinformatics. 2017 Jun 19;18(1):307. doi: 10.1186/s12859-017-1717-6.
7
An image analysis toolbox for high-throughput C. elegans assays.
Nat Methods. 2012 Apr 22;9(7):714-6. doi: 10.1038/nmeth.1984.
8
A microfluidic diode for sorting and immobilization of Caenorhabditis elegans.
Biomed Microdevices. 2017 Jun;19(2):38. doi: 10.1007/s10544-017-0175-2.
9
Automatic identification of Caenorhabditis elegans in population images by shape energy features.
J Microsc. 2010 May;238(2):173-84. doi: 10.1111/j.1365-2818.2009.03339.x.

引用本文的文献

1
Phenotypic Screening in as a Tool for the Discovery of New Geroprotective Drugs.
Pharmaceuticals (Basel). 2020 Jul 25;13(8):164. doi: 10.3390/ph13080164.
2
Algorithmic Mapping and Characterization of the Drug-Induced Phenotypic-Response Space of Parasites Causing Schistosomiasis.
IEEE/ACM Trans Comput Biol Bioinform. 2018 Mar-Apr;15(2):469-481. doi: 10.1109/TCBB.2016.2550444. Epub 2016 Apr 7.
3
High- and low-throughput scoring of fat mass and body fat distribution in C. elegans.
Methods. 2014 Aug 1;68(3):492-9. doi: 10.1016/j.ymeth.2014.04.017. Epub 2014 Apr 28.
4
EXTRACTING BIOMEDICALLY IMPORTANT INFORMATION FROM LARGE, AUTOMATED IMAGING EXPERIMENTS.
Proc IEEE Int Symp Biomed Imaging. 2011:1723-1726. doi: 10.1109/ISBI.2011.5872737.
5
P-TRAP: a Panicle TRAit Phenotyping tool.
BMC Plant Biol. 2013 Aug 29;13:122. doi: 10.1186/1471-2229-13-122.
6
Region-based progressive localization of cell nuclei in microscopic images with data adaptive modeling.
BMC Bioinformatics. 2013 Jun 2;14:173. doi: 10.1186/1471-2105-14-173.
7
An image analysis toolbox for high-throughput C. elegans assays.
Nat Methods. 2012 Apr 22;9(7):714-6. doi: 10.1038/nmeth.1984.
9
Improved structure, function and compatibility for CellProfiler: modular high-throughput image analysis software.
Bioinformatics. 2011 Apr 15;27(8):1179-80. doi: 10.1093/bioinformatics/btr095. Epub 2011 Feb 23.
10
Morphology-guided graph search for untangling objects: C. elegans analysis.
Med Image Comput Comput Assist Interv. 2010;13(Pt 3):634-41. doi: 10.1007/978-3-642-15711-0_79.

本文引用的文献

1
A 3D digital atlas of C. elegans and its application to single-cell analyses.
Nat Methods. 2009 Sep;6(9):667-72. doi: 10.1038/nmeth.1366. Epub 2009 Aug 16.
2
High-throughput screen for novel antimicrobials using a whole animal infection model.
ACS Chem Biol. 2009 Jul 17;4(7):527-33. doi: 10.1021/cb900084v.
3
Automated analysis of embryonic gene expression with cellular resolution in C. elegans.
Nat Methods. 2008 Aug;5(8):703-9. doi: 10.1038/nmeth.1228. Epub 2008 Jun 29.
5
Dimensionality and dynamics in the behavior of C. elegans.
PLoS Comput Biol. 2008 Apr 25;4(4):e1000028. doi: 10.1371/journal.pcbi.1000028.
6
Caenorhabditis elegans: a versatile platform for drug discovery.
Biotechnol J. 2006 Dec;1(12):1405-18. doi: 10.1002/biot.200600176.
7
The worm has turned--microbial virulence modeled in Caenorhabditis elegans.
Trends Microbiol. 2005 Mar;13(3):119-27. doi: 10.1016/j.tim.2005.01.003.
8
Automatic tracking, feature extraction and classification of C elegans phenotypes.
IEEE Trans Biomed Eng. 2004 Oct;51(10):1811-20. doi: 10.1109/TBME.2004.831532.
9
Combining intensity, edge and shape information for 2D and 3D segmentation of cell nuclei in tissue sections.
J Microsc. 2004 Jul;215(Pt 1):67-76. doi: 10.1111/j.0022-2720.2004.01338.x.
10
Genome-wide RNAi screening in Caenorhabditis elegans.
Methods. 2003 Aug;30(4):313-21. doi: 10.1016/s1046-2023(03)00050-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验