Utah Center for Advanced Imaging Research, Department of Radiology, University of Utah, Salt Lake City, Utah, USA.
J Magn Reson Imaging. 2010 Oct;32(4):924-34. doi: 10.1002/jmri.22339.
To present a method for estimating the local arterial input function (AIF) within a dynamic contrast-enhanced MRI scan, based on the alternating minimization with model (AMM) method.
This method clusters a subset of data into representative curves, which are then input to the AMM algorithm to return a parameterized AIF and pharmacokinetic parameters. Computer simulations are used to investigate the accuracy with which the AMM is able to estimate the true AIF as a function of the input tissue curves.
Simulations show that a power law relates uncertainty in kinetic parameters and SNR and heterogeneity of the input. Kinetic parameters calculated with the measured AIF are significantly different from those calculated with either a global (P < 0.005) or a local input function (P = 0.0). The use of local AIFs instead of measured AIFs yield mean lesion-averaged parameter changes: K(trans): +24% [+15%, +70%], k(ep): +13% [-36%, +300%]. Globally estimated input functions yield mean lesion-averaged changes: K(trans): +9% [-38%, +65%], k(ep): +13% [-100%, +400%]. The observed improvement in fit quality with local AIFs was found to be significant when additional free parameters were accounted for using the Akaike information criterion.
Local AIFs result in significantly different kinetic parameter values. The statistically significant improvement in fit quality suggests that changes in parameter estimates using local AIFs reflect differences in underlying tissue physiology.
提出一种基于交替最小化模型(AMM)方法估计动态对比增强 MRI 扫描中局部动脉输入函数(AIF)的方法。
该方法将数据的子集聚类为代表曲线,然后将这些曲线输入 AMM 算法,以返回参数化的 AIF 和药代动力学参数。计算机模拟用于研究 AMM 能够估计真实 AIF 的准确性,作为输入组织曲线的函数。
模拟表明,动力学参数的不确定性与 SNR 和输入的异质性之间存在幂律关系。使用测量的 AIF 计算的动力学参数与使用全局(P < 0.005)或局部输入函数(P = 0.0)计算的动力学参数有显著差异。使用局部 AIF 代替测量的 AIF 会导致平均病变参数变化:K(trans):+24% [+15%,+70%],k(ep):+13% [-36%,+300%]。全局估计的输入函数导致平均病变参数变化:K(trans):+9% [-38%,+65%],k(ep):+13% [-100%,+400%]。当使用 Akaike 信息准则考虑额外的自由参数时,发现使用局部 AIF 可以显著提高拟合质量。
局部 AIF 会导致动力学参数值有显著差异。拟合质量的统计学显著改善表明,使用局部 AIF 估计参数变化反映了组织生理学的差异。