Suppr超能文献

理论模型的扩散加权磁共振信号。

Theoretical models of the diffusion weighted MR signal.

机构信息

Department of Radiology, Washington University, St Louis, MO 63110, USA.

出版信息

NMR Biomed. 2010 Aug;23(7):661-81. doi: 10.1002/nbm.1520.

Abstract

Diffusion MRI plays a very important role in studying biological tissue structure and functioning both in health and disease. Proper interpretation of experimental data requires development of theoretical models that connect the diffusion MRI signal to salient features of tissue microstructure at the cellular level. In this review, we present some models (mostly, relevant to the brain) for describing diffusion attenuated MR signals. These range from the simplest approach, where the signal is described in terms of an apparent diffusion coefficient, to rather complicated models, where consideration is given to signals originating from extra- and intracellular spaces and where account is taken of the specific geometry and orientation distribution of cells. To better understand the characteristics of the diffusion attenuated MR signal arising from the complex structure of whole tissue, it is instructive to appreciate first the characteristics of the signal arising from simple single-cell-like structures. For this purpose, we also present here a theoretical analysis of models allowing exact analytical calculation of the MR signal, specifically, a single-compartment model with impermeable boundaries and a periodic structure of identical cells separated by permeable membranes. Such pure theoretical models give important insights into mechanisms contributing to the MR signal formation in the presence of diffusion. In this review we targeted both scientists just entering the MR field and more experienced MR researchers interested in applying diffusion methods to study biological tissues.

摘要

扩散磁共振成像在研究健康和疾病状态下的生物组织结构和功能方面发挥着非常重要的作用。要正确解释实验数据,就需要开发将扩散磁共振成像信号与细胞水平组织微观结构的显著特征联系起来的理论模型。在这篇综述中,我们介绍了一些用于描述扩散衰减磁共振信号的模型(主要与大脑相关)。这些模型的范围从最简单的方法(其中信号根据表观扩散系数来描述)到相当复杂的模型(其中考虑了来自细胞内外空间的信号,并且考虑了细胞的特定几何形状和取向分布)。为了更好地理解源于整个组织复杂结构的扩散衰减磁共振信号的特征,首先了解源于简单单细胞样结构的信号特征是很有帮助的。为此,我们还在这里对允许对磁共振信号进行精确解析计算的模型进行了理论分析,具体来说,是具有不可渗透边界和由可渗透膜隔开的相同细胞的周期性结构的单室模型。这种纯理论模型为在存在扩散的情况下磁共振信号形成的机制提供了重要的见解。在这篇综述中,我们的目标是既包括刚刚进入磁共振领域的科学家,也包括对应用扩散方法研究生物组织感兴趣的更有经验的磁共振研究人员。

相似文献

1
Theoretical models of the diffusion weighted MR signal.
NMR Biomed. 2010 Aug;23(7):661-81. doi: 10.1002/nbm.1520.
2
Mean apparent propagator (MAP) MRI: a novel diffusion imaging method for mapping tissue microstructure.
Neuroimage. 2013 Sep;78:16-32. doi: 10.1016/j.neuroimage.2013.04.016. Epub 2013 Apr 13.
4
5
A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal.
Neuroimage. 2019 Mar;188:391-402. doi: 10.1016/j.neuroimage.2018.12.025. Epub 2018 Dec 12.
6
A model for diffusion in white matter in the brain.
Biophys J. 2005 Nov;89(5):2927-38. doi: 10.1529/biophysj.105.063016. Epub 2005 Aug 12.
7
Characterization of anomalous diffusion from mr signal may be a new probe to tissue microstructure.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:2256-9. doi: 10.1109/IEMBS.2006.259651.
8
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
10
The role of diffusion tensor imaging in the evaluation of ischemic brain injury - a review.
NMR Biomed. 2002 Nov-Dec;15(7-8):561-9. doi: 10.1002/nbm.786.

引用本文的文献

2
Measuring the velocity autocorrelation function using diffusion NMR.
J Chem Phys. 2025 May 7;162(17). doi: 10.1063/5.0258081.
6
Robust, fast and accurate mapping of diffusional mean kurtosis.
Elife. 2024 Oct 7;12:RP90465. doi: 10.7554/eLife.90465.

本文引用的文献

2
Quantification of lung microstructure with hyperpolarized 3He diffusion MRI.
J Appl Physiol (1985). 2009 Oct;107(4):1258-65. doi: 10.1152/japplphysiol.00386.2009. Epub 2009 Aug 6.
3
Biophysical mechanisms of phase contrast in gradient echo MRI.
Proc Natl Acad Sci U S A. 2009 Aug 11;106(32):13558-63. doi: 10.1073/pnas.0904899106. Epub 2009 Jul 23.
4
Quantitative characterization of tissue microstructure with temporal diffusion spectroscopy.
J Magn Reson. 2009 Oct;200(2):189-97. doi: 10.1016/j.jmr.2009.06.022. Epub 2009 Jul 3.
5
On high b diffusion imaging in the human brain: ruminations and experimental insights.
Magn Reson Imaging. 2009 Oct;27(8):1151-62. doi: 10.1016/j.mri.2009.05.003. Epub 2009 Jun 10.
6
On the origin of the MR image phase contrast: an in vivo MR microscopy study of the rat brain at 14.1 T.
Neuroimage. 2009 Jun;46(2):345-52. doi: 10.1016/j.neuroimage.2009.02.023. Epub 2009 Feb 27.
7
Does diffusion kurtosis imaging lead to better neural tissue characterization? A rodent brain maturation study.
Neuroimage. 2009 Apr 1;45(2):386-92. doi: 10.1016/j.neuroimage.2008.12.018. Epub 2008 Dec 25.
8
Multi-exponential signal decay from diffusion in a single compartment.
J Magn Reson. 2009 Mar;197(1):87-90. doi: 10.1016/j.jmr.2008.12.006. Epub 2008 Dec 14.
9
Age-related non-Gaussian diffusion patterns in the prefrontal brain.
J Magn Reson Imaging. 2008 Dec;28(6):1345-50. doi: 10.1002/jmri.21604.
10
Diffusion in brain extracellular space.
Physiol Rev. 2008 Oct;88(4):1277-340. doi: 10.1152/physrev.00027.2007.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验