School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, Brisbane, Australia.
Centre for Data Science, Queensland University of Technology, Brisbane, Australia.
Elife. 2024 Oct 7;12:RP90465. doi: 10.7554/eLife.90465.
Diffusional kurtosis imaging (DKI) is a methodology for measuring the extent of non-Gaussian diffusion in biological tissue, which has shown great promise in clinical diagnosis, treatment planning, and monitoring of many neurological diseases and disorders. However, robust, fast, and accurate estimation of kurtosis from clinically feasible data acquisitions remains a challenge. In this study, we first outline a new accurate approach of estimating mean kurtosis via the sub-diffusion mathematical framework. Crucially, this extension of the conventional DKI overcomes the limitation on the maximum -value of the latter. Kurtosis and diffusivity can now be simply computed as functions of the sub-diffusion model parameters. Second, we propose a new fast and robust fitting procedure to estimate the sub-diffusion model parameters using two diffusion times without increasing acquisition time as for the conventional DKI. Third, our sub-diffusion-based kurtosis mapping method is evaluated using both simulations and the Connectome 1.0 human brain data. Exquisite tissue contrast is achieved even when the diffusion encoded data is collected in only minutes. In summary, our findings suggest robust, fast, and accurate estimation of mean kurtosis can be realised within a clinically feasible diffusion-weighted magnetic resonance imaging data acquisition time.
扩散峰度成像(DKI)是一种测量生物组织中非高斯扩散程度的方法,它在许多神经疾病和障碍的临床诊断、治疗计划和监测中显示出巨大的潜力。然而,从临床可行的数据采集稳健、快速和准确地估计峰度仍然是一个挑战。在这项研究中,我们首先概述了一种通过亚扩散数学框架估计平均峰度的新的准确方法。至关重要的是,这种对传统 DKI 的扩展克服了后者的最大值限制。现在,峰度和扩散系数可以简单地作为亚扩散模型参数的函数进行计算。其次,我们提出了一种新的快速和稳健的拟合过程,使用两个扩散时间来估计亚扩散模型参数,而不会像传统 DKI 那样增加采集时间。第三,我们使用模拟和 Connectome 1.0 人脑数据评估了基于亚扩散的峰度映射方法。即使在仅几分钟内采集扩散编码数据,也可以实现精细的组织对比。总之,我们的研究结果表明,在临床可行的扩散加权磁共振成像数据采集时间内,可以实现平均峰度的稳健、快速和准确估计。