Suppr超能文献

具有真实脑细胞生成模型的应用,用于扩散加权磁共振信号的数值模拟。

A generative model of realistic brain cells with application to numerical simulation of the diffusion-weighted MR signal.

机构信息

Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.

Centre for Medical Image Computing and Dept of Computer Science, University College London, London, UK.

出版信息

Neuroimage. 2019 Mar;188:391-402. doi: 10.1016/j.neuroimage.2018.12.025. Epub 2018 Dec 12.

Abstract

To date, numerical simulations of the brain tissue have been limited by their lack of realism and flexibility. The purpose of this work is to propose a controlled and flexible generative model for brain cell morphology and an efficient computational pipeline for the reliable and robust simulation of realistic cellular structures with application to numerical simulation of intra-cellular diffusion-weighted MR (DW-MR) signal features. Inspired by the advances in computational neuroscience for modelling brain cells, we propose a generative model that enables users to simulate molecular diffusion within realistic digital brain cells, such as neurons, in a completely controlled and flexible fashion. We validate our new approach by showing an excellent match between the morphology (no statistically different 3D Sholl metrics, P > 0.05) and simulated intra-cellular DW-MR signal (mean relative difference < 2%) of the generated digital model of brain cells and those of digital reconstruction of real brain cells from available open-access databases. We demonstrate the versatility and potential of the framework by showing a select set of examples of relevance for the DW-MR community. The computational models introduced here are useful for synthesizing intra-cellular DW-MR signals, similar to those one might measure from brain metabolites DW-MRS experiments. They also provide the foundation for a more complete simulation system that will potentially include signals from extra-cellular compartments and exchange processes, necessary for synthesizing DW-MR signals of relevance for DW-MRI experiments.

摘要

迄今为止,脑组织的数值模拟受到其缺乏真实性和灵活性的限制。本工作旨在提出一种用于脑细胞形态的可控且灵活的生成模型,以及一种用于可靠且稳健地模拟真实细胞结构的高效计算流水线,应用于细胞内扩散加权磁共振(DW-MR)信号特征的数值模拟。受计算神经科学在模拟脑细胞方面的进展的启发,我们提出了一种生成模型,使用户能够以完全可控和灵活的方式模拟真实数字脑细胞内的分子扩散,如神经元。我们通过展示生成的脑细胞数字模型的形态(3D Sholl 指标无统计学差异,P>0.05)和模拟的细胞内 DW-MR 信号(生成的数字模型与可用的公开访问数据库中的真实脑细胞的数字重建之间的平均相对差异<2%)之间的极好匹配,验证了我们的新方法。我们通过展示一组与 DW-MR 社区相关的示例,展示了该框架的多功能性和潜力。这里介绍的计算模型可用于合成细胞内 DW-MR 信号,类似于从脑代谢物 DW-MRS 实验中可能测量到的信号。它们还为更完整的模拟系统提供了基础,该系统可能包括细胞外隔室和交换过程的信号,这对于合成与 DW-MRI 实验相关的 DW-MR 信号是必要的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验