Division of Genetics, Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093-0642, USA.
Neurobiol Dis. 2011 Jul;43(1):46-51. doi: 10.1016/j.nbd.2010.09.009. Epub 2010 Sep 29.
Macroautophagy is a cellular process by which cytosolic components and organelles are degraded in double-membrane bound structures upon fusion with lysosomes. A pathway for selective degradation of mitochondria by autophagy, known as mitophagy, has been described, and is of particular importance to neurons, because of the constant need for high levels of energy production in this cell type. Although much remains to be learned about mitophagy, it appears that the regulation of mitophagy shares key steps with the macroautophagy pathway, while exhibiting distinct regulatory steps specific for mitochondrial autophagic turnover. Mitophagy is emerging as an important pathway in neurodegenerative disease, and has been linked to the pathogenesis of Parkinson's disease through the study of recessively inherited forms of this disorder, involving PINK1 and Parkin. Recent work indicates that PINK1 and Parkin together maintain mitochondrial quality control by regulating mitophagy. In the Purkinje cell degeneration (pcd) mouse, altered mitophagy may contribute to the dramatic neuron cell death observed in the cerebellum, suggesting that over-active mitophagy or insufficient mitophagy can both be deleterious. Finally, mitophagy has been linked to aging, as impaired macroautophagy over time promotes mitochondrial dysfunction associated with the aging process. Understanding the role of mitophagy in neural function, neurodegenerative disease, and aging represents an essential goal for future research in the autophagy field. This article is part of a Special Issue entitled "Autophagy and protein degradation in neurological diseases."
自噬是一种细胞过程,通过该过程,细胞质成分和细胞器在与溶酶体融合时被双层膜包裹的结构降解。已经描述了一种通过自噬选择性降解线粒体的途径,称为线粒体自噬,这对神经元尤为重要,因为这种细胞类型需要持续高水平的能量产生。尽管关于线粒体自噬还有很多需要了解的地方,但似乎线粒体自噬的调节与巨自噬途径共享关键步骤,同时表现出与线粒体自噬周转特定的独特调节步骤。线粒体自噬作为神经退行性疾病中的一个重要途径正在出现,并通过研究涉及 PINK1 和 Parkin 的这种疾病的隐性遗传形式与帕金森病的发病机制有关。最近的工作表明,PINK1 和 Parkin 通过调节线粒体自噬一起维持线粒体质量控制。在浦肯野细胞退化(pcd)小鼠中,改变的线粒体自噬可能导致小脑中观察到的戏剧性神经元细胞死亡,这表明过度活跃的线粒体自噬或不足的线粒体自噬都可能是有害的。最后,线粒体自噬与衰老有关,因为随着时间的推移,巨自噬的受损会促进与衰老过程相关的线粒体功能障碍。了解线粒体自噬在神经功能、神经退行性疾病和衰老中的作用是自噬领域未来研究的一个重要目标。本文是题为“神经疾病中的自噬和蛋白质降解”的特刊的一部分。
Front Genet. 2012-12-19
Biochim Biophys Acta. 2015-11
Neurochem Int. 2017-2-21
Neurotox Res. 2019-5-17
Neurosci Lett. 2019-4-1
Int J Mol Sci. 2021-9-23
Biochim Biophys Acta. 2011-4
iScience. 2024-10-18
CNS Neurosci Ther. 2024-10
Int J Mol Sci. 2023-4-11
Antioxidants (Basel). 2023-1-12
Front Aging. 2022-6-22
Cell Mol Life Sci. 2021-4
Inflammation. 2021-2
Nat Neurosci. 2010-7
Mol Microbiol. 2010-2
Nat Neurosci. 2010-4-11
Neuropathol Appl Neurobiol. 2010-2-19
Nature. 2010-2-11
PLoS Biol. 2010-1-26