Suppr超能文献

有尾噬菌体的三维不对称重建

Three-dimensional asymmetric reconstruction of tailed bacteriophage.

作者信息

Tang Jinghua, Sinkovits Robert S, Baker Timothy S

机构信息

Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, USA.

出版信息

Methods Enzymol. 2010;482:185-210. doi: 10.1016/S0076-6879(10)82008-7.

Abstract

A universal goal in studying the structures of macromolecules and macromolecular complexes by means of electron cryo-microscopy (cryo-TEM) and three-dimensional (3D) image reconstruction is the derivation of a reliable atomic or pseudoatomic model. Such a model provides the foundation for exploring in detail the mechanisms by which biomolecules function. Though a variety of highly ordered, symmetric specimens such as 2D crystals, helices, and icosahedral virus capsids have been studied by these methods at near-atomic resolution, until recently, numerous challenges have made it difficult to achieve sub-nanometer resolution with large (≥~500Å), asymmetric molecules such as the tailed bacteriophages. After briefly reviewing some of the history behind the development of asymmetric virus reconstructions, we use recent structural studies of the prolate phage ϕ29 as an example to illustrate the step-by-step procedures used to compute an asymmetric reconstruction at sub-nanometer resolution. In contrast to methods that have been employed to study other asymmetric complexes, we demonstrate how symmetries in the head and tail components of the phage can be exploited to obtain the structure of the entire phage in an expedited, stepwise process. Prospects for future enhancements to the procedures currently employed are noted in the concluding section.

摘要

通过冷冻电子显微镜(cryo-TEM)和三维(3D)图像重建技术研究大分子和大分子复合物结构的一个普遍目标是推导可靠的原子或准原子模型。这样的模型为详细探索生物分子发挥功能的机制提供了基础。尽管通过这些方法已经在近原子分辨率下研究了各种高度有序、对称的标本,如二维晶体、螺旋体和二十面体病毒衣壳,但直到最近,众多挑战使得难以用大型(≥~500Å)、不对称分子(如尾噬菌体)实现亚纳米分辨率。在简要回顾不对称病毒重建发展背后的一些历史之后,我们以长形噬菌体ϕ29的近期结构研究为例,说明用于计算亚纳米分辨率不对称重建的逐步程序。与用于研究其他不对称复合物的方法不同,我们展示了如何利用噬菌体头部和尾部组件中的对称性,通过一个快速、逐步的过程获得整个噬菌体的结构。结论部分指出了当前所用程序未来改进的前景。

相似文献

1
Three-dimensional asymmetric reconstruction of tailed bacteriophage.
Methods Enzymol. 2010;482:185-210. doi: 10.1016/S0076-6879(10)82008-7.
2
Observation of Bacteriophage Ultrastructure by Cryo-Electron Microscopy.
Methods Mol Biol. 2024;2734:13-25. doi: 10.1007/978-1-0716-3523-0_2.
3
Observation of Bacteriophage Ultrastructure by Cryo-electron Microscopy.
Methods Mol Biol. 2018;1693:43-55. doi: 10.1007/978-1-4939-7395-8_5.
4
Confessions of an icosahedral virus crystallographer.
Microscopy (Oxf). 2013 Feb;62(1):69-79. doi: 10.1093/jmicro/dfs097. Epub 2013 Jan 4.
5
DNA packaging and delivery machines in tailed bacteriophages.
Curr Opin Struct Biol. 2007 Apr;17(2):237-43. doi: 10.1016/j.sbi.2007.03.011. Epub 2007 Mar 28.
7
Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.
J Struct Biol. 2018 Jan;201(1):1-4. doi: 10.1016/j.jsb.2017.10.007. Epub 2017 Oct 27.
8
High resolution single particle Cryo-EM refinement using JSPR.
Prog Biophys Mol Biol. 2021 Mar;160:37-42. doi: 10.1016/j.pbiomolbio.2020.05.006. Epub 2020 Jul 3.
9
Symmetry-adapted spherical harmonics method for high-resolution 3D single-particle reconstructions.
J Struct Biol. 2008 Jan;161(1):64-73. doi: 10.1016/j.jsb.2007.09.016. Epub 2007 Oct 1.

引用本文的文献

1
Asymmetric analysis reveals novel virus capsid features.
Biophys Rev. 2019 Aug;11(4):603-609. doi: 10.1007/s12551-019-00572-9. Epub 2019 Jul 24.
3
Structural investigations of a Podoviridae streptococcus phage C1, implications for the mechanism of viral entry.
Proc Natl Acad Sci U S A. 2012 Aug 28;109(35):14001-6. doi: 10.1073/pnas.1207730109. Epub 2012 Aug 13.
4
Peering down the barrel of a bacteriophage portal: the genome packaging and release valve in p22.
Structure. 2011 Apr 13;19(4):496-502. doi: 10.1016/j.str.2011.02.010.

本文引用的文献

1
Reconstruction of three dimensional structures from electron micrographs.
Nature. 1968 Jan 13;217(5124):130-4. doi: 10.1038/217130a0.
2
3.3 A cryo-EM structure of a nonenveloped virus reveals a priming mechanism for cell entry.
Cell. 2010 Apr 30;141(3):472-82. doi: 10.1016/j.cell.2010.03.041. Epub 2010 Apr 15.
3
Human bocavirus capsid structure: insights into the structural repertoire of the parvoviridae.
J Virol. 2010 Jun;84(12):5880-9. doi: 10.1128/JVI.02719-09. Epub 2010 Apr 7.
4
Subunit interactions in bovine papillomavirus.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6298-303. doi: 10.1073/pnas.0914604107. Epub 2010 Mar 22.
5
Single-particle reconstruction of biological macromolecules in electron microscopy--30 years.
Q Rev Biophys. 2009 Aug;42(3):139-58. doi: 10.1017/S0033583509990059.
6
An icosahedral algal virus has a complex unique vertex decorated by a spike.
Proc Natl Acad Sci U S A. 2009 Jul 7;106(27):11085-9. doi: 10.1073/pnas.0904716106. Epub 2009 Jun 18.
7
The advent of near-atomic resolution in single-particle electron microscopy.
Annu Rev Biochem. 2009;78:723-42. doi: 10.1146/annurev.biochem.78.070507.140543.
8
Molecular interactions in rotavirus assembly and uncoating seen by high-resolution cryo-EM.
Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10644-8. doi: 10.1073/pnas.0904024106. Epub 2009 Jun 1.
9
Appion: an integrated, database-driven pipeline to facilitate EM image processing.
J Struct Biol. 2009 Apr;166(1):95-102. doi: 10.1016/j.jsb.2009.01.002.
10
Comparison of single-particle analysis and electron tomography approaches: an overview.
J Microsc. 2008 Dec;232(3):562-79. doi: 10.1111/j.1365-2818.2008.02119.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验