Suppr超能文献

利用多模型方法预测出汗量。

Sweat loss prediction using a multi-model approach.

机构信息

Biophysics and Biomedical Modeling Division, US Army Research Institute of Environmental Medicine, Natick, MA 01760, USA.

出版信息

Int J Biometeorol. 2011 Jul;55(4):501-8. doi: 10.1007/s00484-010-0371-8. Epub 2010 Oct 4.

Abstract

A new multi-model approach (MMA) for sweat loss prediction is proposed to improve prediction accuracy. MMA was computed as the average of sweat loss predicted by two existing thermoregulation models: i.e., the rational model SCENARIO and the empirical model Heat Strain Decision Aid (HSDA). Three independent physiological datasets, a total of 44 trials, were used to compare predictions by MMA, SCENARIO, and HSDA. The observed sweat losses were collected under different combinations of uniform ensembles, environmental conditions (15-40°C, RH 25-75%), and exercise intensities (250-600 W). Root mean square deviation (RMSD), residual plots, and paired t tests were used to compare predictions with observations. Overall, MMA reduced RMSD by 30-39% in comparison with either SCENARIO or HSDA, and increased the prediction accuracy to 66% from 34% or 55%. Of the MMA predictions, 70% fell within the range of mean observed value ± SD, while only 43% of SCENARIO and 50% of HSDA predictions fell within the same range. Paired t tests showed that differences between observations and MMA predictions were not significant, but differences between observations and SCENARIO or HSDA predictions were significantly different for two datasets. Thus, MMA predicted sweat loss more accurately than either of the two single models for the three datasets used. Future work will be to evaluate MMA using additional physiological data to expand the scope of populations and conditions.

摘要

提出了一种新的多模型方法 (MMA) 来预测汗液流失,以提高预测精度。MMA 计算为两个现有热调节模型预测的汗液流失的平均值:即理性模型情景和经验模型热应激决策辅助 (HSDA)。使用三个独立的生理数据集,共 44 项试验,比较 MMA、SCENARIO 和 HSDA 的预测。在不同的均匀套件组合、环境条件(15-40°C,RH 25-75%)和运动强度(250-600 W)下收集观察到的汗液流失。使用均方根偏差 (RMSD)、残差图和配对 t 检验来比较预测值与观测值。总体而言,与 SCENARIO 或 HSDA 相比,MMA 将 RMSD 降低了 30-39%,并将预测精度从 34%或 55%提高到 66%。在 MMA 的预测中,70%落在平均观测值±SD 的范围内,而只有 43%的 SCENARIO 和 50%的 HSDA 预测落在相同范围内。配对 t 检验表明,观察值与 MMA 预测值之间的差异不显著,但观察值与 SCENARIO 或 HSDA 预测值之间的差异在两个数据集上显著不同。因此,MMA 对三个数据集的汗液流失预测比两个单模型中的任何一个都更准确。未来的工作将使用额外的生理数据来评估 MMA,以扩大人群和条件的范围。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验