School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, United Kingdom.
J Neurosci Res. 2010 Nov 15;88(15):3267-74. doi: 10.1002/jnr.22502.
Neural stem cell (NSC) migration is an important component of their developmental function and therapeutic potential. Understanding their mode of migration and their response to guidance cues can contribute to improved therapies for CNS repair, in which appropriate homing to sites of injury is essential. Using time-lapse imaging, we have analyzed the NSC mode of migration in vitro, both in the absence of directional cues and in the presence of applied electric fields (EFs), previously shown to constitute a strong directional signal for these cells. Without EFs, NSCs displayed an amoeboid motion, characterized by small lamellipodial-like protrusions with changing orientations, leading to highly tortuous migration. In EFs, tortuosity diminished as electrotaxis toward the cathode occurred. EFs suppressed the formation of protrusions oriented toward the anode, suggesting that restriction of protrusions with opposing orientation could underlie the change from tortuous motion to directed migration. Treatment with LY294002, a phosphatidylinositol-3-OH kinase (Pi3K) inhibitor, reduced the cathodal bias of protrusions in EFs and the frequency of changes in direction. We generated a model of NSC migration with only two key parameters, which could accurately reproduce experimental migration patterns, and we used it to show that both effects of LY294002 contribute to impair electrotaxis, although decreased protrusion bias is the most important. Our results show that control of protrusion orientation by EFs is an important component of the electrotactic response. A simple modelling approach might be useful in understanding how diverse pharmacological treatments or genetic deletions affect different kinds of directional cell migration.
神经干细胞(NSC)的迁移是其发育功能和治疗潜力的重要组成部分。了解它们的迁移模式及其对导向线索的反应,可以促进中枢神经系统修复的改进疗法,而适当的归巢到损伤部位是至关重要的。我们使用延时成像技术,分析了 NSC 在体外的迁移模式,包括在没有定向线索和施加电场(EFs)的情况下,先前的研究表明 EFs 是这些细胞的一个强烈的定向信号。在没有 EFs 的情况下,NSC 表现出阿米巴样运动,其特征是具有变化方向的小片状样突起,导致高度曲折的迁移。在 EFs 中,随着向阴极的电趋性发生,曲折度减小。EFs 抑制了朝向阳极的突起的形成,这表明限制具有相反方向的突起可能是从曲折运动到定向迁移的变化的基础。用磷脂酰肌醇-3-OH 激酶(Pi3K)抑制剂 LY294002 处理,减少了 EFs 中突起的阴极偏向和方向变化的频率。我们建立了一个只有两个关键参数的 NSC 迁移模型,可以准确地再现实验迁移模式,并利用它表明 LY294002 的两种作用都有助于削弱电趋性,尽管突起偏向的减少是最重要的。我们的结果表明,EFs 对突起方向的控制是电趋性反应的一个重要组成部分。简单的建模方法可能有助于理解不同的药物治疗或基因缺失如何影响不同类型的定向细胞迁移。