Suppr超能文献

整体微管的各向异性弹性网络建模。

Anisotropic elastic network modeling of entire microtubules.

机构信息

Department of Mechanics, Politecnico di Torino, Turin, Italy.

出版信息

Biophys J. 2010 Oct 6;99(7):2190-9. doi: 10.1016/j.bpj.2010.06.070.

Abstract

Microtubules are supramolecular structures that make up the cytoskeleton and strongly affect the mechanical properties of the cell. Within the cytoskeleton filaments, the microtubule (MT) exhibits by far the highest bending stiffness. Bending stiffness depends on the mechanical properties and intermolecular interactions of the tubulin dimers (the MT building blocks). Computational molecular modeling has the potential for obtaining quantitative insights into this area. However, to our knowledge, standard molecular modeling techniques, such as molecular dynamics (MD) and normal mode analysis (NMA), are not yet able to simulate large molecular structures like the MTs; in fact, their possibilities are normally limited to much smaller protein complexes. In this work, we developed a multiscale approach by merging the modeling contribution from MD and NMA. In particular, MD simulations were used to refine the molecular conformation and arrangement of the tubulin dimers inside the MT lattice. Subsequently, NMA was used to investigate the vibrational properties of MTs modeled as an elastic network. The coarse-grain model here developed can describe systems of hundreds of interacting tubulin monomers (corresponding to up to 1,000,000 atoms). In particular, we were able to simulate coarse-grain models of entire MTs, with lengths up to 350 nm. A quantitative mechanical investigation was performed; from the bending and stretching modes, we estimated MT macroscopic properties such as bending stiffness, Young modulus, and persistence length, thus allowing a direct comparison with experimental data.

摘要

微管是构成细胞骨架的超分子结构,强烈影响细胞的机械性能。在细胞骨架纤维中,微管(MT)表现出迄今为止最高的弯曲刚度。弯曲刚度取决于微管二聚体(MT 的构建块)的力学性能和分子间相互作用。计算分子建模有可能对此领域获得定量的认识。然而,据我们所知,标准的分子建模技术,如分子动力学(MD)和正常模式分析(NMA),目前还不能模拟像 MT 这样的大分子结构;实际上,它们的可能性通常仅限于更小的蛋白质复合物。在这项工作中,我们通过合并 MD 和 NMA 的建模贡献开发了一种多尺度方法。具体来说,MD 模拟用于细化 MT 晶格内微管二聚体的分子构象和排列。随后,使用 NMA 研究了作为弹性网络建模的 MT 的振动特性。这里开发的粗粒度模型可以描述数百个相互作用的微管单体(对应于多达 1,000,000 个原子)的系统。特别地,我们能够模拟长达 350nm 的整个 MT 的粗粒度模型。进行了定量力学研究;从弯曲和拉伸模式中,我们估计了 MT 的宏观性质,如弯曲刚度、杨氏模量和持久长度,从而可以与实验数据进行直接比较。

相似文献

2
Multiscale modeling of the nanomechanics of microtubule protofilaments.微管原丝的纳米力学的多尺度建模。
J Phys Chem B. 2012 Jul 26;116(29):8545-55. doi: 10.1021/jp212608f. Epub 2012 Apr 27.
4
Anisotropic elastic properties of microtubules.微管的各向异性弹性特性。
Eur Phys J E Soft Matter. 2005 May;17(1):29-35. doi: 10.1140/epje/i2004-10102-5. Epub 2005 Apr 6.
5
Multiscale Computational Analysis of the Effect of Taxol on Microtubule Mechanics.多尺度计算分析紫杉醇对微管力学的影响。
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5666-5674. doi: 10.1021/acsbiomaterials.4c00847. Epub 2024 Aug 21.
10

引用本文的文献

本文引用的文献

1
Vibrations in microtubules.微管中的振动。
J Biol Phys. 1997 Sep;23(3):171-9. doi: 10.1023/A:1005092601078.
2
Microtubule elasticity: connecting all-atom simulations with continuum mechanics.微管弹性:将原子模拟与连续力学联系起来。
Phys Rev Lett. 2010 Jan 8;104(1):018101. doi: 10.1103/PhysRevLett.104.018101. Epub 2010 Jan 4.
3
Probing the origin of tubulin rigidity with molecular simulations.通过分子模拟探究微管蛋白刚性的起源。
Proc Natl Acad Sci U S A. 2008 Oct 14;105(41):15743-8. doi: 10.1073/pnas.0806113105. Epub 2008 Oct 7.
7
Circumferential vibration of microtubules with long axial wavelength.具有长轴向波长的微管圆周振动。
J Biomech. 2008;41(9):1892-6. doi: 10.1016/j.jbiomech.2008.03.029. Epub 2008 Jun 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验