Zha Jinyin, Zhang Yuwei, Xia Kelin, Gräter Frauke, Xia Fei
School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
Front Mol Biosci. 2021 Feb 15;7:632122. doi: 10.3389/fmolb.2020.632122. eCollection 2020.
Microtubules are one of the most important components in the cytoskeleton and play a vital role in maintaining the shape and function of cells. Because single microtubules are some micrometers long, it is difficult to simulate such a large system using an all-atom model. In this work, we use the newly developed convolutional and K-means coarse-graining (CK-CG) method to establish an ultra-coarse-grained (UCG) model of a single microtubule, on the basis of the low electron microscopy density data of microtubules. We discuss the rationale of the micro-coarse-grained microtubule models of different resolutions and explore microtubule models up to 12-micron length. We use the devised microtubule model to quantify mechanical properties of microtubules of different lengths. Our model allows mesoscopic simulations of micrometer-level biomaterials and can be further used to study important biological processes related to microtubule function.
微管是细胞骨架中最重要的组成部分之一,在维持细胞的形状和功能方面起着至关重要的作用。由于单个微管长达数微米,使用全原子模型模拟如此大的系统很困难。在这项工作中,我们基于微管的低电子显微镜密度数据,使用新开发的卷积和K均值粗粒化(CK-CG)方法建立了单个微管的超粗粒化(UCG)模型。我们讨论了不同分辨率的微粗粒化微管模型的原理,并探索了长达12微米的微管模型。我们使用设计的微管模型来量化不同长度微管的力学性能。我们的模型允许对微米级生物材料进行介观模拟,并可进一步用于研究与微管功能相关的重要生物学过程。