Dutow Pavel, Schmidl Sebastian R, Ridderbusch Meike, Stülke Jörg
Abteilung für Allgemeine Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität Göttingen, Göttingen, Deutschland.
J Mol Microbiol Biotechnol. 2010;19(3):134-9. doi: 10.1159/000321499. Epub 2010 Oct 6.
With only 688 protein-coding genes, Mycoplasma pneumoniae is one of the smallest self-replicating organisms. These bacteria use glycolysis as the major pathway for ATP production by substrate-level phosphorylation, suggesting that this pathway must be optimized to high efficiency. In this study, we have investigated the interactions between glycolytic enzymes using the bacterial adenylate cyclase-based two-hybrid system. We demonstrate that most of the glycolytic enzymes perform self-interactions, suggesting that they form dimers or other oligomeric forms. In addition, enolase was identified as the central glycolytic enzyme of M. pneumoniae due to its ability to directly interact with all other glycolytic enzymes. Our results support the idea of the formation of a glycolytic complex in M. pneumoniae and we suggest that the formation of this complex might ensure higher fluxes through the glycolytic pathway than would be possible with isolated non-interacting enzymes.
肺炎支原体只有688个蛋白质编码基因,是最小的自我复制生物之一。这些细菌利用糖酵解作为通过底物水平磷酸化产生ATP的主要途径,这表明该途径必须优化至高效。在本研究中,我们使用基于细菌腺苷酸环化酶的双杂交系统研究了糖酵解酶之间的相互作用。我们证明大多数糖酵解酶进行自我相互作用,表明它们形成二聚体或其他寡聚形式。此外,烯醇化酶因其能够直接与所有其他糖酵解酶相互作用而被确定为肺炎支原体的核心糖酵解酶。我们的结果支持肺炎支原体中形成糖酵解复合物的观点,并且我们认为该复合物的形成可能确保通过糖酵解途径的通量高于分离的非相互作用酶所能达到的通量。