Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.
Development. 2010 Nov;137(22):3801-11. doi: 10.1242/dev.054387. Epub 2010 Oct 7.
During its earliest stages, the avian embryo is approximately planar. Through a complex series of folds, this flat geometry is transformed into the intricate three-dimensional structure of the developing organism. Formation of the head fold (HF) is the first step in this cascading sequence of out-of-plane tissue folds. The HF establishes the anterior extent of the embryo and initiates heart, foregut and brain development. Here, we use a combination of computational modeling and experiments to determine the physical forces that drive HF formation. Using chick embryos cultured ex ovo, we measured: (1) changes in tissue morphology in living embryos using optical coherence tomography (OCT); (2) morphogenetic strains (deformations) through the tracking of tissue labels; and (3) regional tissue stresses using changes in the geometry of circular wounds punched through the blastoderm. To determine the physical mechanisms that generate the HF, we created a three-dimensional computational model of the early embryo, consisting of pseudoelastic plates representing the blastoderm and vitelline membrane. Based on previous experimental findings, we simulated the following morphogenetic mechanisms: (1) convergent extension in the neural plate (NP); (2) cell wedging along the anterior NP border; and (3) autonomous in-plane deformations outside the NP. Our numerical predictions agree relatively well with the observed morphology, as well as with our measured stress and strain distributions. The model also predicts the abnormal tissue geometries produced when development is mechanically perturbed. Taken together, the results suggest that the proposed morphogenetic mechanisms provide the main tissue-level forces that drive HF formation.
在胚胎发育的早期,禽类胚胎大致呈平面状。通过一系列复杂的折叠,这个平面结构被转化为发育中生物体错综复杂的三维结构。头褶(HF)的形成是这一系列平面外组织折叠的第一步。HF 确定了胚胎的前界,并启动了心脏、前肠和大脑的发育。在这里,我们结合计算建模和实验来确定驱动 HF 形成的物理力。我们使用体外培养的鸡胚进行研究,测量了:(1)使用光学相干断层扫描(OCT)测量活胚胎中的组织形态变化;(2)通过跟踪组织标记来测量形态发生应变(变形);(3)通过在胚盘上打孔造成的圆形伤口的几何形状变化来测量组织的局部应力。为了确定产生 HF 的物理机制,我们创建了一个早期胚胎的三维计算模型,该模型由代表胚盘和卵黄膜的伪弹性板组成。基于先前的实验发现,我们模拟了以下形态发生机制:(1)神经板(NP)中的收敛扩展;(2)沿着 NP 前缘的细胞楔入;(3)NP 外部的自主平面内变形。我们的数值预测与观察到的形态、测量的应力和应变分布相对吻合较好。该模型还预测了在机械干扰下发育产生的异常组织几何形状。总之,结果表明,所提出的形态发生机制提供了驱动 HF 形成的主要组织水平力。