Suppr超能文献

头部褶皱形成的力学机制:探究早期发育过程中的组织层面力。

Mechanics of head fold formation: investigating tissue-level forces during early development.

机构信息

Department of Biomedical Engineering, Washington University, St Louis, MO 63130, USA.

出版信息

Development. 2010 Nov;137(22):3801-11. doi: 10.1242/dev.054387. Epub 2010 Oct 7.

Abstract

During its earliest stages, the avian embryo is approximately planar. Through a complex series of folds, this flat geometry is transformed into the intricate three-dimensional structure of the developing organism. Formation of the head fold (HF) is the first step in this cascading sequence of out-of-plane tissue folds. The HF establishes the anterior extent of the embryo and initiates heart, foregut and brain development. Here, we use a combination of computational modeling and experiments to determine the physical forces that drive HF formation. Using chick embryos cultured ex ovo, we measured: (1) changes in tissue morphology in living embryos using optical coherence tomography (OCT); (2) morphogenetic strains (deformations) through the tracking of tissue labels; and (3) regional tissue stresses using changes in the geometry of circular wounds punched through the blastoderm. To determine the physical mechanisms that generate the HF, we created a three-dimensional computational model of the early embryo, consisting of pseudoelastic plates representing the blastoderm and vitelline membrane. Based on previous experimental findings, we simulated the following morphogenetic mechanisms: (1) convergent extension in the neural plate (NP); (2) cell wedging along the anterior NP border; and (3) autonomous in-plane deformations outside the NP. Our numerical predictions agree relatively well with the observed morphology, as well as with our measured stress and strain distributions. The model also predicts the abnormal tissue geometries produced when development is mechanically perturbed. Taken together, the results suggest that the proposed morphogenetic mechanisms provide the main tissue-level forces that drive HF formation.

摘要

在胚胎发育的早期,禽类胚胎大致呈平面状。通过一系列复杂的折叠,这个平面结构被转化为发育中生物体错综复杂的三维结构。头褶(HF)的形成是这一系列平面外组织折叠的第一步。HF 确定了胚胎的前界,并启动了心脏、前肠和大脑的发育。在这里,我们结合计算建模和实验来确定驱动 HF 形成的物理力。我们使用体外培养的鸡胚进行研究,测量了:(1)使用光学相干断层扫描(OCT)测量活胚胎中的组织形态变化;(2)通过跟踪组织标记来测量形态发生应变(变形);(3)通过在胚盘上打孔造成的圆形伤口的几何形状变化来测量组织的局部应力。为了确定产生 HF 的物理机制,我们创建了一个早期胚胎的三维计算模型,该模型由代表胚盘和卵黄膜的伪弹性板组成。基于先前的实验发现,我们模拟了以下形态发生机制:(1)神经板(NP)中的收敛扩展;(2)沿着 NP 前缘的细胞楔入;(3)NP 外部的自主平面内变形。我们的数值预测与观察到的形态、测量的应力和应变分布相对吻合较好。该模型还预测了在机械干扰下发育产生的异常组织几何形状。总之,结果表明,所提出的形态发生机制提供了驱动 HF 形成的主要组织水平力。

相似文献

9
Cellular mechanisms of neural fold formation and morphogenesis in the chick embryo.鸡胚神经褶形成和形态发生的细胞机制。
Anat Rec. 2001 Feb 1;262(2):153-68. doi: 10.1002/1097-0185(20010201)262:2<153::AID-AR1021>3.0.CO;2-W.

引用本文的文献

本文引用的文献

2
Emergent morphogenesis: elastic mechanics of a self-deforming tissue.突发形态发生:自变形组织的弹性力学。
J Biomech. 2010 Jan 5;43(1):63-70. doi: 10.1016/j.jbiomech.2009.09.010. Epub 2009 Oct 8.
3
Myosin II is required for interkinetic nuclear migration of neural progenitors.肌球蛋白II是神经祖细胞的核间迁移所必需的。
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16487-92. doi: 10.1073/pnas.0908928106. Epub 2009 Sep 9.
5
Integration of single and multicellular wound responses.单细胞和多细胞伤口反应的整合
Curr Biol. 2009 Aug 25;19(16):1389-95. doi: 10.1016/j.cub.2009.06.044. Epub 2009 Jul 23.
7
Dynamic positional fate map of the primary heart-forming region.原始心脏形成区域的动态位置命运图谱。
Dev Biol. 2009 Aug 15;332(2):212-22. doi: 10.1016/j.ydbio.2009.05.570. Epub 2009 Jun 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验