Suppr超能文献

p53 翻译为“p53 蛋白”;post-translational modification 翻译为“翻译后修饰”;tumorgenesis 翻译为“肿瘤发生”。 因此,这句话的译文为: p53 蛋白翻译后修饰:肿瘤发生中失调。

p53 post-translational modification: deregulated in tumorigenesis.

机构信息

Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA.

出版信息

Trends Mol Med. 2010 Nov;16(11):528-36. doi: 10.1016/j.molmed.2010.09.002.

Abstract

The p53 tumor suppressor protein has well-established roles in monitoring various types of stress signals by activating specific transcriptional targets that control cell cycle arrest and apoptosis, although some activities are also mediated in a transcription-independent manner. Here, we review the recent advances in our understanding of the wide spectrum of post-translational modifications that act as epigenetic-like codes for modulating specific functions of p53 in vivo and how deregulation of these modifications might contribute to tumorigenesis. We also discuss future research priorities to further understand p53 post-translational modifications and the interpretation of genetic data in appreciation of the increasing evidence that p53 regulates cellular metabolism, autophagy and many unconventional tumor suppressor activities.

摘要

p53 肿瘤抑制蛋白通过激活特定的转录靶标,在监测各种类型的应激信号方面发挥着重要作用,这些靶标控制细胞周期停滞和细胞凋亡,尽管有些活性也以转录非依赖性的方式进行调节。在这里,我们回顾了我们对广泛的翻译后修饰的理解的最新进展,这些修饰作为表观遗传样密码,调节 p53 在体内的特定功能,以及这些修饰的失调如何导致肿瘤发生。我们还讨论了未来的研究重点,以进一步了解 p53 翻译后修饰,并解释遗传数据,以认识到越来越多的证据表明 p53 调节细胞代谢、自噬和许多非传统的肿瘤抑制活性。

相似文献

1
p53 post-translational modification: deregulated in tumorigenesis.
Trends Mol Med. 2010 Nov;16(11):528-36. doi: 10.1016/j.molmed.2010.09.002.
2
Post-translational modifications of p53 tumor suppressor: determinants of its functional targets.
Histol Histopathol. 2012 Apr;27(4):437-43. doi: 10.14670/HH-27.437.
3
Surf the post-translational modification network of p53 regulation.
Int J Biol Sci. 2012;8(5):672-84. doi: 10.7150/ijbs.4283. Epub 2012 May 10.
4
p53 modifications: exquisite decorations of the powerful guardian.
J Mol Cell Biol. 2019 Jul 19;11(7):564-577. doi: 10.1093/jmcb/mjz060.
5
Protein methylation: a new mechanism of p53 tumor suppressor regulation.
Histol Histopathol. 2008 Sep;23(9):1143-9. doi: 10.14670/HH-23.1143.
6
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression.
Oncogene. 2022 May;41(22):3039-3050. doi: 10.1038/s41388-022-02331-9. Epub 2022 Apr 29.
7
Ubiquitination, phosphorylation and acetylation: the molecular basis for p53 regulation.
Curr Opin Cell Biol. 2003 Apr;15(2):164-71. doi: 10.1016/s0955-0674(03)00003-6.
8
The impact of acetylation and deacetylation on the p53 pathway.
Protein Cell. 2011 Jun;2(6):456-62. doi: 10.1007/s13238-011-1063-9. Epub 2011 Jul 12.
9
Tickets for p53 journey among organelles.
Front Biosci (Landmark Ed). 2009 Jan 1;14(11):4214-28. doi: 10.2741/3524.

引用本文的文献

1
Molecular Basis of BRAF Inhibitor Resistance in Melanoma: A Systematic Review.
Pharmaceuticals (Basel). 2025 Aug 21;18(8):1235. doi: 10.3390/ph18081235.
2
Preclinical Modeling of Navtemadlin Pharmacokinetics, Pharmacodynamics, and Efficacy in IDH-Wild-type Glioblastoma.
Clin Cancer Res. 2025 Sep 2;31(17):3771-3786. doi: 10.1158/1078-0432.CCR-25-0244.
3
The advances in acetylation modification in senescence and aging-related diseases.
Front Physiol. 2025 May 12;16:1553646. doi: 10.3389/fphys.2025.1553646. eCollection 2025.
4
Structural and mechanistic diversity in p53-mediated regulation of organismal longevity across taxonomical orders.
PLoS Comput Biol. 2025 May 2;21(5):e1012382. doi: 10.1371/journal.pcbi.1012382. eCollection 2025 May.
5
Designer polyQ fusion proteins sequester USP7/HDM2 for modulating P53 functionality.
iScience. 2025 Feb 13;28(3):112025. doi: 10.1016/j.isci.2025.112025. eCollection 2025 Mar 21.
6
FGF2 Mediated USP42-PPARγ Axis Activation Ameliorates Liver Oxidative Damage and Promotes Regeneration.
Adv Sci (Weinh). 2025 May;12(18):e2408724. doi: 10.1002/advs.202408724. Epub 2025 Mar 17.
8
Defeating lethal cancer: Interrupting the ecologic and evolutionary basis of death from malignancy.
CA Cancer J Clin. 2025 May-Jun;75(3):183-202. doi: 10.3322/caac.70000. Epub 2025 Mar 9.
9
CNPY2 in Solid Tumors: Mechanisms, Biomarker Potential, and Therapeutic Implications.
Biology (Basel). 2025 Feb 18;14(2):214. doi: 10.3390/biology14020214.
10
Implication of protein post translational modifications in gastric cancer.
Front Cell Dev Biol. 2025 Feb 4;13:1523958. doi: 10.3389/fcell.2025.1523958. eCollection 2025.

本文引用的文献

1
G9a and Glp methylate lysine 373 in the tumor suppressor p53.
J Biol Chem. 2010 Mar 26;285(13):9636-9641. doi: 10.1074/jbc.M109.062588. Epub 2010 Jan 29.
2
USP10 regulates p53 localization and stability by deubiquitinating p53.
Cell. 2010 Feb 5;140(3):384-96. doi: 10.1016/j.cell.2009.12.032. Epub 2010 Jan 21.
4
Inactivation of HAUSP in vivo modulates p53 function.
Oncogene. 2010 Mar 4;29(9):1270-9. doi: 10.1038/onc.2009.427. Epub 2009 Nov 30.
5
GAMT, a p53-inducible modulator of apoptosis, is critical for the adaptive response to nutrient stress.
Mol Cell. 2009 Nov 13;36(3):379-92. doi: 10.1016/j.molcel.2009.09.031.
6
CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53.
Proc Natl Acad Sci U S A. 2009 Sep 22;106(38):16275-80. doi: 10.1073/pnas.0904305106. Epub 2009 Sep 4.
7
Small-molecule inhibitor of USP7/HAUSP ubiquitin protease stabilizes and activates p53 in cells.
Mol Cancer Ther. 2009 Aug;8(8):2286-95. doi: 10.1158/1535-7163.MCT-09-0097. Epub 2009 Aug 11.
8
The multiple levels of regulation by p53 ubiquitination.
Cell Death Differ. 2010 Jan;17(1):86-92. doi: 10.1038/cdd.2009.77.
9
Acetylation of the DNA binding domain regulates transcription-independent apoptosis by p53.
J Biol Chem. 2009 Jul 24;284(30):20197-205. doi: 10.1074/jbc.M109.026096. Epub 2009 Jun 3.
10
Modes of p53 regulation.
Cell. 2009 May 15;137(4):609-22. doi: 10.1016/j.cell.2009.04.050.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验