Suppr超能文献

组织感知的概率模型。

Organizing probabilistic models of perception.

机构信息

Department of Neuroscience, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA.

出版信息

Trends Cogn Sci. 2012 Oct;16(10):511-8. doi: 10.1016/j.tics.2012.08.010. Epub 2012 Sep 11.

Abstract

Probability has played a central role in models of perception for more than a century, but a look at probabilistic concepts in the literature raises many questions. Is being Bayesian the same as being optimal? Are recent Bayesian models fundamentally different from classic signal detection theory models? Do findings of near-optimal inference provide evidence that neurons compute with probability distributions? This review aims to disentangle these concepts and to classify empirical evidence accordingly.

摘要

概率在一个多世纪以来的感知模型中一直扮演着核心角色,但从文献中观察概率概念会引发许多问题。贝叶斯方法是否等同于最优方法?最近的贝叶斯模型是否与经典的信号检测理论模型有根本的不同?近乎最优的推断发现是否为神经元使用概率分布进行计算提供了证据?这篇综述旨在理清这些概念,并据此对经验证据进行分类。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验