Suppr超能文献

贝叶斯决策理论与导航。

Bayesian decision theory and navigation.

机构信息

Vanderbilt University, PMB 407817, 2301 Vanderbilt Place, Nashville, TN, 37240, USA.

Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.

出版信息

Psychon Bull Rev. 2022 Jun;29(3):721-752. doi: 10.3758/s13423-021-01988-9. Epub 2021 Nov 24.

Abstract

Spatial navigation is a complex cognitive activity that depends on perception, action, memory, reasoning, and problem-solving. Effective navigation depends on the ability to combine information from multiple spatial cues to estimate one's position and the locations of goals. Spatial cues include landmarks, and other visible features of the environment, and body-based cues generated by self-motion (vestibular, proprioceptive, and efferent information). A number of projects have investigated the extent to which visual cues and body-based cues are combined optimally according to statistical principles. Possible limitations of these investigations are that they have not accounted for navigators' prior experiences with or assumptions about the task environment and have not tested complete decision models. We examine cue combination in spatial navigation from a Bayesian perspective and present the fundamental principles of Bayesian decision theory. We show that a complete Bayesian decision model with an explicit loss function can explain a discrepancy between optimal cue weights and empirical cues weights observed by (Chen et al. Cognitive Psychology, 95, 105-144, 2017) and that the use of informative priors to represent cue bias can explain the incongruity between heading variability and heading direction observed by (Zhao and Warren 2015b, Psychological Science, 26[6], 915-924). We also discuss (Petzschner and Glasauer's , Journal of Neuroscience, 31(47), 17220-17229, 2011) use of priors to explain biases in estimates of linear displacements during visual path integration. We conclude that Bayesian decision theory offers a productive theoretical framework for investigating human spatial navigation and believe that it will lead to a deeper understanding of navigational behaviors.

摘要

空间导航是一种复杂的认知活动,依赖于感知、行动、记忆、推理和解决问题的能力。有效的导航依赖于将来自多个空间线索的信息结合起来,以估计自己的位置和目标的位置的能力。空间线索包括地标和环境的其他可见特征,以及由自身运动产生的基于身体的线索(前庭、本体感觉和传出信息)。许多项目已经研究了根据统计原理,视觉线索和基于身体的线索结合的程度。这些研究的可能局限性在于,它们没有考虑到导航者对任务环境的先前经验和假设,也没有测试完整的决策模型。我们从贝叶斯的角度研究空间导航中的线索组合,并介绍贝叶斯决策理论的基本原理。我们表明,具有显式损失函数的完整贝叶斯决策模型可以解释(Chen 等人,认知心理学,95,105-144,2017)观察到的最优线索权重与经验线索权重之间的差异,并且使用信息先验来表示线索偏差可以解释(Zhao 和 Warren,2015b,心理科学,26[6],915-924)观察到的航向变化与航向方向之间的不一致。我们还讨论了(Petzschner 和 Glasauer 的,神经科学杂志,31(47),17220-17229,2011)使用先验来解释视觉路径整合过程中线性位移估计中的偏差。我们得出结论,贝叶斯决策理论为研究人类空间导航提供了一个富有成效的理论框架,我们相信它将导致对导航行为的更深入理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验