Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario, Canada.
Neuroimage. 2011 Feb 1;54(3):2086-95. doi: 10.1016/j.neuroimage.2010.09.086. Epub 2010 Oct 13.
Multiple recent human imaging studies have suggested that the structure of the brain can change with learning. To investigate the mechanism behind such structural plasticity, we sought to determine whether maze learning in mice induces brain shape changes that are detectable by MRI and whether such changes are specific to the type of learning. Here we trained inbred mice for 5 days on one of three different versions of the Morris water maze and, using high-resolution MRI, revealed specific growth in the hippocampus of mice trained on a spatial variant of the maze, whereas mice trained on the cued version were found to have growth in the striatum. The structure-specific growth found furthermore correlated with GAP-43 staining, a marker of neuronal process remodelling, but not with neurogenesis nor neuron or astrocyte numbers or sizes. Our findings provide evidence that brain morphology changes rapidly at a scale detectable by MRI and furthermore demonstrate that specific brain regions grow or shrink in response to the changing environmental demands. The data presented herein have implications for both human imaging as well as rodent structural plasticity research, in that it provides a tool to screen for neuronal plasticity across the whole brain in the mouse while also providing a direct link between human and mouse studies.
多项近期的人类影像学研究表明,大脑结构可以随着学习而改变。为了探究这种结构可塑性的机制,我们试图确定在小鼠中进行迷津学习是否会引起可通过 MRI 检测到的脑形状变化,以及这种变化是否特定于学习类型。在这里,我们在 5 天的时间里,让近交系小鼠接受了三种不同版本的 Morris 水迷宫中的一种训练,使用高分辨率 MRI,我们发现经过空间变体迷宫训练的小鼠的海马体有特定的生长,而经过线索变体迷宫训练的小鼠则发现纹状体有生长。此外,发现的结构特异性生长与 GAP-43 染色(神经元过程重塑的标志物)相关,但与神经发生、神经元或星形胶质细胞数量或大小无关。我们的研究结果提供了证据,表明大脑形态可以通过 MRI 检测到的规模迅速变化,并且还表明特定的大脑区域会根据不断变化的环境需求而增长或缩小。本文提供的这些数据对人类影像学以及啮齿动物结构可塑性研究都具有重要意义,因为它为在小鼠中筛选整个大脑的神经元可塑性提供了一种工具,同时也为人类和小鼠研究之间建立了直接联系。