Suppr超能文献

脑电图自然位置顺序中的互信息在发作起始时显著增加。

Mutual information in natural position order of electroencephalogram is significantly increased at seizure onset.

机构信息

Department of Neurology, Division of Epilepsy, The Ohio State University Medical Center, 395 W. 12th Avenue, 7th Floor, Columbus, OH 43210, USA.

出版信息

Med Biol Eng Comput. 2011 Feb;49(2):133-41. doi: 10.1007/s11517-010-0684-0. Epub 2010 Oct 9.

Abstract

Epilepsy affects an estimated 60 million people worldwide. As many as 50% of people with epilepsy will continue to have seizures despite therapeutic dosages of appropriately selected antiepileptic drugs. Among proposed treatment modalities for persons with medication refractory epilepsy are implantable devices that rapidly detect and abort seizures. Computational resources in these devices are limited and much effort is directed to improving the efficiency of seizure detection. The goal of this study is to determine if electroencephalogram (EEG) may be reduced by the method of natural position order in a way that increases computation speed and reduces system memory requirements while preserving features relevant to detecting seizure onset. In this study we show increased mutual information (MI) at seizure onset in simultaneous channels of EEG reduced by natural position order with a 40-fold reduction in computation time and a fivefold reduction in system memory requirements. The trade-offs to EEG reduction by natural position order include decreased bandwidth and increased noise sensitivity.

摘要

癫痫影响全球约 6000 万人。尽管使用了适当选择的抗癫痫药物的治疗剂量,仍有多达 50%的癫痫患者会继续发作。对于药物难治性癫痫患者,提出了一些治疗方法,包括快速检测和终止癫痫发作的植入式设备。这些设备中的计算资源有限,因此需要大量努力来提高癫痫发作检测的效率。本研究的目的是确定脑电图 (EEG) 是否可以通过自然位置顺序的方法来减少,从而在不影响检测癫痫发作相关特征的情况下,提高计算速度并降低系统内存需求。在本研究中,我们发现在计算时间减少 40 倍且系统内存需求减少五倍的情况下,通过自然位置顺序减少的同时 EEG 通道中的互信息 (MI) 在癫痫发作开始时增加。通过自然位置顺序减少 EEG 会带来一些权衡,包括带宽降低和噪声敏感度增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验