Epithelial Systems Biology Laboratory, NHLBI, National Institutes of Health, Bethesda, MD 20892-1603, USA.
Mol Cell Proteomics. 2011 Jan;10(1):M110.004036. doi: 10.1074/mcp.M110.004036. Epub 2010 Oct 12.
Previous studies in yeast have supported the view that post-transcriptional regulation of protein abundances may be more important than previously believed. Here we ask the question: "In a physiological regulatory process (the response of mammalian kidney cells to the hormone vasopressin), what fraction of the expressed proteome undergoes a change in abundance and what fraction of the regulated proteins have corresponding changes in mRNA levels?" In humans and other mammals, vasopressin fulfills a vital homeostatic role (viz. regulation of renal water excretion) by regulating the water channel aquaporin-2 in collecting duct cells. To address the question posed, we utilized large-scale quantitative protein mass spectrometry (LC-MS/MS) employing stable isotopic labeling in cultured mpkCCD cells ('SILAC') coupled with transcriptomic profiling using oligonucleotide expression arrays (Affymetrix). Preliminary studies analyzing two nominally identical control samples by SILAC LC-MS/MS yielded a relative S.D. of 13% (for ratios), establishing the precision of the SILAC approach in our hands. We quantified nearly 3000 proteins with nontargeted SILAC LC-MS/MS, comparing vasopressin- versus vehicle-treated samples. Of these proteins 786 of them were quantified in each of 3 experiments, allowing statistical analysis and 188 of these showed significant vasopressin-induced changes in abundance, including aquaporin-2 (20-fold increase). Among the proteins with statistically significant abundance changes, a large fraction (at least one-third) was found to lack changes in the corresponding mRNA species (despite sufficient statistical power), indicating that post-transcriptional regulation of protein abundance plays an important role in the vasopressin response. Bioinformatic analysis of the regulated proteins (versus all transcripts) shows enrichment of glutathione S-transferase isoforms as well as proteins involved in organization of the actin cytoskeleton. The latter suggests that long-term regulatory processes may contribute to actomyosin-dependent trafficking of the water channel aquaporin-2. The results provide impetus for increased focus on translational regulation and regulation of protein degradation in physiological control in mammalian epithelial cells.
先前在酵母中的研究支持这样一种观点,即蛋白质丰度的转录后调控可能比以前认为的更为重要。在这里,我们提出了一个问题:“在生理调节过程中(哺乳动物肾细胞对激素血管加压素的反应),表达蛋白质组中有多少部分发生丰度变化,而有多少受调节的蛋白质对应于 mRNA 水平的变化?”在人类和其他哺乳动物中,血管加压素通过调节集合管细胞中的水通道 aquaporin-2 来发挥重要的体内平衡作用(即调节肾脏水排泄)。为了解决所提出的问题,我们利用了大规模的定量蛋白质质谱(LC-MS/MS),采用稳定同位素标记的培养 mpkCCD 细胞(“SILAC”),并结合寡核苷酸表达谱分析(Affymetrix)。通过 SILAC LC-MS/MS 分析两个名义上相同的对照样品的初步研究得出相对标准偏差为 13%(用于比率),从而确立了我们手中 SILAC 方法的精度。我们使用非靶向 SILAC LC-MS/MS 定量了近 3000 种蛋白质,比较了血管加压素处理与对照处理的样品。在这 3 个实验中,每个实验都对其中的 786 种蛋白质进行了定量,允许进行统计分析,其中 188 种蛋白质显示出显著的血管加压素诱导的丰度变化,包括水通道 aquaporin-2(增加 20 倍)。在丰度有统计学意义变化的蛋白质中,很大一部分(至少三分之一)缺乏相应 mRNA 物种的变化(尽管有足够的统计能力),这表明蛋白质丰度的转录后调控在血管加压素反应中起着重要作用。对受调节的蛋白质(与所有转录物相比)进行的生物信息学分析显示,谷胱甘肽 S-转移酶同工酶以及参与肌动蛋白细胞骨架组织的蛋白质富集。后者表明,长期的调节过程可能有助于水通道 aquaporin-2 的肌球蛋白依赖运输。这些结果为增加对哺乳动物上皮细胞生理控制中转录后调节和蛋白质降解调节的关注提供了动力。