Department of Biochemistry and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
Free Radic Res. 2011 Jan;45(1):37-52. doi: 10.3109/10715762.2010.516254. Epub 2010 Oct 13.
Mitochondria are primary loci for the intracellular formation and reactions of reactive oxygen and nitrogen species including superoxide (O₂•⁻), hydrogen peroxide (H₂O₂) and peroxynitrite (ONOO⁻). Depending on formation rates and steady-state levels, the mitochondrial-derived short-lived reactive species contribute to signalling events and/or mitochondrial dysfunction through oxidation reactions. Among relevant oxidative modifications in mitochondria, the nitration of the amino acid tyrosine to 3-nitrotyrosine has been recognized in vitro and in vivo. This post-translational modification in mitochondria is promoted by peroxynitrite and other nitrating species and can disturb organelle homeostasis. This study assesses the biochemical mechanisms of protein tyrosine nitration within mitochondria, the main nitration protein targets and the impact of 3-nitrotyrosine formation in the structure, function and fate of modified mitochondrial proteins. Finally, the inhibition of mitochondrial protein tyrosine nitration by endogenous and mitochondrial-targeted antioxidants and their physiological or pharmacological relevance to preserve mitochondrial functions is analysed.
线粒体是活性氧和氮物种(包括超氧阴离子 (O₂•⁻)、过氧化氢 (H₂O₂) 和过氧亚硝酸盐 (ONOO⁻))在细胞内形成和反应的主要场所。根据形成速率和稳态水平,线粒体衍生的短寿命活性物质通过氧化反应有助于信号事件和/或线粒体功能障碍。在相关的线粒体氧化修饰中,已经在体外和体内鉴定到氨基酸酪氨酸的硝化产物 3-硝基酪氨酸。这种线粒体中的翻译后修饰受过氧亚硝酸盐和其他硝化物质的促进,并可能扰乱细胞器的动态平衡。本研究评估了线粒体中蛋白质酪氨酸硝化的生化机制、主要硝化蛋白靶标以及 3-硝基酪氨酸形成对修饰线粒体蛋白结构、功能和命运的影响。最后,分析了内源性和线粒体靶向抗氧化剂对抑制线粒体蛋白酪氨酸硝化的作用及其对维持线粒体功能的生理或药理学意义。