Suppr超能文献

一种用于生成高质量、高分辨率扩散加权成像数据集的离体成像流水线。

An ex vivo imaging pipeline for producing high-quality and high-resolution diffusion-weighted imaging datasets.

机构信息

Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark.

出版信息

Hum Brain Mapp. 2011 Apr;32(4):544-63. doi: 10.1002/hbm.21043.

Abstract

Diffusion tensor (DT) imaging and related multifiber reconstruction algorithms allow the study of in vivo microstructure and, by means of tractography, structural connectivity. Although reconstruction algorithms are promising imaging tools, high-quality diffusion-weighted imaging (DWI) datasets for verification and validation of postprocessing and analysis methods are lacking. Clinical in vivo DWI is limited by, for example, physiological noise and low signal-to-noise ratio. Here, we performed a series of DWI measurements on postmortem pig brains, which resemble the human brain in neuroanatomical complexity, to establish an ex vivo imaging pipeline for generating high-quality DWI datasets. Perfusion fixation ensured that tissue characteristics were comparable to in vivo conditions. There were three main results: (i) heat conduction and unstable tissue mechanics accounted for time-varying artefacts in the DWI dataset, which were present for up to 15 h after positioning brain tissue in the scanner; (ii) using fitted DT, q-ball, and persistent angular structure magnetic resonance imaging algorithms, any b-value between ∼2,000 and ∼8,000 s/mm(2) , with an optimal value around 4,000 s/mm(2) , allowed for consistent reconstruction of fiber directions; (iii) diffusivity measures in the postmortem brain tissue were stable over a 3-year period. On the basis of these results, we established an optimized ex vivo pipeline for high-quality and high-resolution DWI. The pipeline produces DWI data sets with a high level of tissue structure detail showing for example two parallel horizontal rims in the cerebral cortex and multiple rims in the hippocampus. We conclude that high-quality ex vivo DWI can be used to validate fiber reconstruction algorithms and to complement histological studies.

摘要

弥散张量(DT)成像和相关的多纤维重建算法允许研究体内微观结构,并通过轨迹追踪研究结构连接。尽管重建算法是很有前途的成像工具,但缺乏用于验证和确认后处理和分析方法的高质量弥散加权成像(DWI)数据集。临床体内 DWI 受到例如生理噪声和低信噪比的限制。在这里,我们对死后猪脑进行了一系列 DWI 测量,这些猪脑在神经解剖复杂性上与人类大脑相似,以建立用于生成高质量 DWI 数据集的离体成像管道。灌注固定确保了组织特性与体内条件相当。主要有三个结果:(i)热传导和不稳定的组织力学导致 DWI 数据集的时变伪影,这些伪影在将脑组织放置在扫描仪中后最多存在 15 小时;(ii)使用拟合的 DT、q-ball 和持久角结构磁共振成像算法,任何 b 值在 ∼2,000 和 ∼8,000 s/mm²之间,最佳值在 4,000 s/mm²左右,允许一致地重建纤维方向;(iii)死后脑组织中的扩散测量值在 3 年内保持稳定。基于这些结果,我们建立了一个优化的离体高质量和高分辨率 DWI 管道。该管道产生的 DWI 数据集具有高水平的组织结构细节,例如在大脑皮层中显示两个平行的水平边缘和在海马体中显示多个边缘。我们得出结论,高质量的离体 DWI 可用于验证纤维重建算法并补充组织学研究。

相似文献

2
Interpolation of diffusion weighted imaging datasets.扩散加权成像数据集的插值
Neuroimage. 2014 Dec;103:202-213. doi: 10.1016/j.neuroimage.2014.09.005. Epub 2014 Sep 16.
5
Acute ex vivo changes in brain white matter diffusion tensor metrics.脑白质弥散张量测量的体外急性变化。
PLoS One. 2019 Sep 26;14(9):e0223211. doi: 10.1371/journal.pone.0223211. eCollection 2019.
8
Tractometer: towards validation of tractography pipelines.束径仪:用于追踪技术管道的验证。
Med Image Anal. 2013 Oct;17(7):844-57. doi: 10.1016/j.media.2013.03.009. Epub 2013 Apr 25.

引用本文的文献

本文引用的文献

9
Validation of in vitro probabilistic tractography.体外概率纤维束成像的验证
Neuroimage. 2007 Oct 1;37(4):1267-77. doi: 10.1016/j.neuroimage.2007.06.022. Epub 2007 Jul 10.
10
Volumetric neuroimage analysis extensions for the MIPAV software package.MIPAV软件包的体积神经影像分析扩展
J Neurosci Methods. 2007 Sep 15;165(1):111-21. doi: 10.1016/j.jneumeth.2007.05.024. Epub 2007 May 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验