Electrical Engineering, University of Minnesota, Room 4-178, 200 Union Street SE, Minneapolis, Minnesota 55455, United States.
Nano Lett. 2010 Nov 10;10(11):4494-500. doi: 10.1021/nl102344r.
This article reports and applies a recently discovered programmable multimaterial deposition process to the formation and combinatorial improvement of 3D nanostructured devices. The gas-phase deposition process produces charged <5 nm particles of silver, tungsten, and platinum and uses externally biased electrodes to control the material flux and to turn deposition ON/OFF in selected domains. Domains host nanostructured dielectrics to define arrays of electrodynamic 10 × nanolenses to further control the flux to form <100 nm resolution deposits. The unique feature of the process is that material type, amount, and sequence can be altered from one domain to the next leading to different types of nanostructures including multimaterial bridges, interconnects, or nanowire arrays with 20 nm positional accuracy. These features enable combinatorial nanostructured materials and device discovery. As a first demonstration, we produce and identify in a combinatorial way 3D nanostructured electrode designs that improve light scattering, absorption, and minority carrier extraction of bulk heterojunction photovoltaic cells. Photovoltaic cells from domains with long and dense nanowire arrays improve the relative power conversion efficiency by 47% when compared to flat domains on the same substrate.
本文报道并应用了一种最近发现的可编程多材料沉积工艺,用于形成和组合改进 3D 纳米结构器件。气相沉积工艺产生带电荷的<5nm 银、钨和铂颗粒,并使用外部偏置电极来控制材料通量,并在选定的区域内打开/关闭沉积。这些区域中含有纳米结构的电介质,以定义一系列的电动力学 10×纳米透镜阵列,从而进一步控制通量,形成<100nm 分辨率的沉积物。该工艺的独特之处在于,可以从一个区域到另一个区域改变材料类型、数量和顺序,从而形成不同类型的纳米结构,包括多材料桥、互连或具有 20nm 定位精度的纳米线阵列。这些特性使组合式纳米结构材料和器件的发现成为可能。作为第一个演示,我们以组合的方式制作和识别了 3D 纳米结构电极设计,这些设计改善了体异质结光伏电池的光散射、吸收和少数载流子提取。与同一衬底上的平面区域相比,具有长而密集纳米线阵列的区域的光伏电池的相对功率转换效率提高了 47%。