Suppr超能文献

相似文献

1
Artificial metalloenzymes based on biotin-avidin technology for the enantioselective reduction of ketones by transfer hydrogenation.
Proc Natl Acad Sci U S A. 2005 Mar 29;102(13):4683-7. doi: 10.1073/pnas.0409684102. Epub 2005 Mar 16.
2
Artificial metalloenzymes based on the biotin-avidin technology: enantioselective catalysis and beyond.
Acc Chem Res. 2011 Jan 18;44(1):47-57. doi: 10.1021/ar100099u. Epub 2010 Oct 15.
3
Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
Acc Chem Res. 2016 Sep 20;49(9):1711-21. doi: 10.1021/acs.accounts.6b00235. Epub 2016 Aug 16.
5
Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
J Am Chem Soc. 2003 Jul 30;125(30):9030-1. doi: 10.1021/ja035545i.
7
Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
Acc Chem Res. 2019 Mar 19;52(3):585-595. doi: 10.1021/acs.accounts.8b00618. Epub 2019 Feb 8.
10
Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
J Am Chem Soc. 2019 Oct 9;141(40):15869-15878. doi: 10.1021/jacs.9b06923. Epub 2019 Sep 25.

引用本文的文献

1
2
Designing Artificial Metalloenzymes by Tuning of the Environment beyond the Primary Coordination Sphere.
Chem Rev. 2022 Jul 27;122(14):11974-12045. doi: 10.1021/acs.chemrev.2c00106. Epub 2022 Jul 11.
4
Artificial Metalloenzymes: Challenges and Opportunities.
ACS Cent Sci. 2019 Jul 24;5(7):1120-1136. doi: 10.1021/acscentsci.9b00397. Epub 2019 Jul 16.
6
Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
Nat Protoc. 2016 May;11(5):835-52. doi: 10.1038/nprot.2016.019. Epub 2016 Mar 31.
7
Protein design: toward functional metalloenzymes.
Chem Rev. 2014 Apr 9;114(7):3495-578. doi: 10.1021/cr400458x. Epub 2014 Mar 24.
10
Protein scaffold of a designed metalloenzyme enhances the chemoselectivity in sulfoxidation of thioanisole.
Chem Commun (Camb). 2008 Apr 14(14):1665-7. doi: 10.1039/b718915j. Epub 2008 Feb 4.

本文引用的文献

1
Synthesis of a Configurationally Stable Three-Legged Piano-Stool Complex.
Angew Chem Int Ed Engl. 1999 Feb 1;38(3):405-408. doi: 10.1002/(SICI)1521-3773(19990201)38:3<405::AID-ANIE405>3.0.CO;2-0.
2
Regioselective Reduction of NAD Models with [Cp*Rh(bpy)H] : Structure-Activity Relationships and Mechanistic Aspects in the Formation of the 1,4-NADH Derivatives.
Angew Chem Int Ed Engl. 1999 May 17;38(10):1429-1432. doi: 10.1002/(SICI)1521-3773(19990517)38:10<1429::AID-ANIE1429>3.0.CO;2-Q.
5
Artificial metalloenzymes for enantioselective catalysis based on biotin-avidin.
J Am Chem Soc. 2003 Jul 30;125(30):9030-1. doi: 10.1021/ja035545i.
6
A site-selective dual anchoring strategy for artificial metalloprotein design.
J Am Chem Soc. 2004 Sep 8;126(35):10812-3. doi: 10.1021/ja046908x.
8
Accelerated asymmetric transfer hydrogenation of aromatic ketones in water.
Org Biomol Chem. 2004 Jul 7;2(13):1818-21. doi: 10.1039/b403627a. Epub 2004 May 25.
10
Controlling the enantioselectivity of enzymes by directed evolution: practical and theoretical ramifications.
Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):5716-22. doi: 10.1073/pnas.0306866101. Epub 2004 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验