Suppr超能文献

使用修正的受限最大似然估计量在协方差分析中进行序约束下的统计推断。

Statistical inference under order restrictions in analysis of covariance using a modified restricted maximum likelihood estimator.

作者信息

Betcher Joshua, Peddada Shyamal D

机构信息

Quintiles Inc., Research Triangle Park, NC 27560, U.S.A.

出版信息

Sankhya Ser B. 2009;71(1):79-96.

Abstract

In this article we introduce a new procedure for estimating population parameters under inequality constraints (known as order restrictions) when the unrestricted maximum liklelihood estimator (UMLE) is multivariate normally distributed with a known covariance matrix. Furthermore, a Dunnett-type test procedure along with the corresponding simultaneous confidence intervals are proposed for drawing inferences on elementary contrasts of population parameters under order restrictions. The proposed methodology is motivated by estimation and testing problems encountered in the analysis of covariance models. It is well-known that the restricted maximum likelihood estimator (RMLE) may perform poorly under certain conditions in terms of quadratic loss. For example, when the UMLE is distributed according to multivariate normal distribution with means satisfying simple tree order restriction and the dimension of the population mean vector is large. We investigate the performance of the proposed estimator analytically as well as using computer simulations and discover that the proposed method does not fail in the situations where RMLE fails. We illustrate the proposed methodology by re-analyzing a recently published rat uterotrophic bioassay data.

摘要

在本文中,我们介绍一种新方法,用于在无限制最大似然估计量(UMLE)服从具有已知协方差矩阵的多元正态分布时,估计不等式约束(即序约束)下的总体参数。此外,还提出了一种Dunnett型检验程序以及相应的同时置信区间,用于对序约束下总体参数的基本对比进行推断。所提出的方法是由协方差模型分析中遇到的估计和检验问题所推动的。众所周知,在某些条件下,受限最大似然估计量(RMLE)在二次损失方面可能表现不佳。例如,当UMLE根据均值满足简单树形序约束的多元正态分布进行分布且总体均值向量的维度较大时。我们通过解析以及计算机模拟来研究所提出估计量的性能,并发现所提出的方法在RMLE失败的情况下不会失效。我们通过重新分析最近发表的大鼠子宫营养生物测定数据来说明所提出的方法。

相似文献

2
Shrinkage estimators for covariance matrices.
Biometrics. 2001 Dec;57(4):1173-84. doi: 10.1111/j.0006-341x.2001.01173.x.
3
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
4
Estimation and inference concerning ordered means in analysis of covariance models with interactions.
J Am Stat Assoc. 2013 Sep 27;108(503). doi: 10.1080/01621459.2013.797355.
6
Shrinkage estimation of non-negative mean vector with unknown covariance under balance loss.
J Inequal Appl. 2018;2018(1):331. doi: 10.1186/s13660-018-1919-0. Epub 2018 Dec 3.
7
Oracle estimation of parametric models under boundary constraints.
Biometrics. 2016 Dec;72(4):1173-1183. doi: 10.1111/biom.12520. Epub 2016 Apr 8.
8
Testing for inequality constraints in singular models by trimming or winsorizing the variance matrix.
J Am Stat Assoc. 2018;113(522):906-918. doi: 10.1080/01621459.2017.1301258. Epub 2018 Jun 5.
9
Covariance of maximum likelihood evolutionary distances between sequences aligned pairwise.
BMC Evol Biol. 2008 Jun 23;8:179. doi: 10.1186/1471-2148-8-179.
10
Statistical inference based on the nonparametric maximum likelihood estimator under double-truncation.
Lifetime Data Anal. 2015 Jul;21(3):397-418. doi: 10.1007/s10985-014-9297-5. Epub 2014 Jul 8.

引用本文的文献

1
Estimation and inference concerning ordered means in analysis of covariance models with interactions.
J Am Stat Assoc. 2013 Sep 27;108(503). doi: 10.1080/01621459.2013.797355.

本文引用的文献

1
The OECD program to validate the rat uterotrophic bioassay. Phase 2: coded single-dose studies.
Environ Health Perspect. 2003 Sep;111(12):1550-8. doi: 10.1289/ehp.5870.
2
The OECD program to validate the rat uterotrophic bioassay. Phase 2: dose-response studies.
Environ Health Perspect. 2003 Sep;111(12):1530-49. doi: 10.1289/ehp.5780.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验