Department of Anesthesiology, and Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
Proc Natl Acad Sci U S A. 2010 Nov 2;107(44):19096-101. doi: 10.1073/pnas.1002685107. Epub 2010 Oct 19.
Large conductance voltage- and calcium-activated potassium channels (MaxiK, BK(Ca)) are well known for sustaining cerebral and coronary arterial tone and for their linkage to vasodilator β-adrenergic receptors. However, how MaxiK channels are linked to counterbalancing vasoconstrictor receptors is unknown. Here, we show that vasopressive thromboxane A2 receptors (TP) can intimately couple with and inhibit MaxiK channels. Activation of the receptor with its agonist trans-inhibits MaxiK independently of G-protein activation. This unconventional mechanism is supported by independent lines of evidence: (i) inhibition of MaxiK current by thromboxane A2 mimetic, U46619, occurs even when G-protein activity is suppressed; (ii) MaxiK and TP physically associate and display a high degree of proximity; and (iii) Förster resonance energy transfer occurs between fluorescently labeled MaxiK and TP, supporting a direct interaction. The molecular mechanism of MaxiK-TP intimate interaction involves the receptor's first intracellular loop and C terminus, and it entails the voltage-sensing conduction cassette of MaxiK channel. Further, physiological evidence of MaxiK-TP physical interaction is given in human coronaries and rat aorta, and by confirming TP role (with antagonist SQ29,548) in the U46619-induced MaxiK inhibition in human coronaries. We propose that vasoconstrictor TP receptor and MaxiK-channel direct interaction facilitates G-protein-independent TP to MaxiK trans-inhibition, which would promote vasoconstriction.
大电导电压和钙激活钾通道(MaxiK,BK(Ca))以维持脑和冠状动脉张力以及与血管扩张性β-肾上腺素能受体的联系而闻名。然而,MaxiK 通道如何与抵消血管收缩性受体相关联尚不清楚。在这里,我们表明血管加压血栓素 A2 受体(TP)可以与 MaxiK 紧密偶联并抑制其功能。该受体的激动剂反式激活可独立于 G 蛋白激活而抑制 MaxiK。这种非传统机制得到了独立证据的支持:(i)血栓烷 A2 类似物 U46619 抑制 MaxiK 电流的作用即使在 G 蛋白活性被抑制时也会发生;(ii)MaxiK 和 TP 物理结合并显示出高度接近度;(iii)荧光标记的 MaxiK 和 TP 之间发生Förster 共振能量转移,支持直接相互作用。MaxiK-TP 紧密相互作用的分子机制涉及受体的第一细胞内环和 C 末端,并且需要 MaxiK 通道的电压感应传导盒。此外,在人类冠状动脉和大鼠主动脉中提供了 MaxiK-TP 物理相互作用的生理证据,并通过在人类冠状动脉中用拮抗剂 SQ29,548 确认 TP 作用(用拮抗剂 SQ29,548)在 U46619 诱导的 MaxiK 抑制中证实了这一点。我们提出,血管收缩性 TP 受体和 MaxiK 通道的直接相互作用促进了 G 蛋白非依赖性的 TP 对 MaxiK 的反式抑制,这将促进血管收缩。