Institute for Crop Science, Bioinformatic Unit, Universität Hohenheim, Fruwirthstrasse 23, Stuttgart, Germany.
Heredity (Edinb). 2011 May;106(5):825-31. doi: 10.1038/hdy.2010.125. Epub 2010 Oct 20.
Control of the genome-wide type I error rate (GWER) is an important issue in association mapping and linkage mapping experiments. For the latter, different approaches, such as permutation procedures or Bonferroni correction, were proposed. The permutation test, however, cannot account for population structure present in most association mapping populations. This can lead to false positive associations. The Bonferroni correction is applicable, but usually on the conservative side, because correlation of tests cannot be exploited. Therefore, a new approach is proposed, which controls the genome-wide error rate, while accounting for population structure. This approach is based on a simulation procedure that is equally applicable in a linkage and an association-mapping context. Using the parameter settings of three real data sets, it is shown that the procedure provides control of the GWER and the generalized genome-wide type I error rate (GWER(k)).
控制全基因组错误率(GWER)是关联作图和连锁作图实验中的一个重要问题。对于后者,已经提出了不同的方法,如置换程序或 Bonferroni 校正。然而,置换检验不能解释大多数关联作图群体中存在的群体结构。这可能导致假阳性关联。Bonferroni 校正适用,但通常偏向保守,因为无法利用检验的相关性。因此,提出了一种新的方法,该方法在控制全基因组错误率的同时考虑了群体结构。该方法基于模拟程序,该程序在连锁和关联作图环境中同样适用。使用三个真实数据集的参数设置,表明该程序提供了对 GWER 和广义全基因组 I 型错误率(GWER(k))的控制。