Suppr超能文献

模拟纳米粒子在几毫米厚衬底中的 STEM 成像。

Simulating STEM imaging of nanoparticles in micrometers-thick substrates.

机构信息

Universite de Sherbrooke, Electrical and Computer Engineering Department, Sherbrooke, Quebec J1K 2R1, Canada.

出版信息

Microsc Microanal. 2010 Dec;16(6):795-804. doi: 10.1017/S1431927610094080. Epub 2010 Oct 20.

Abstract

Scanning transmission electron microscope (STEM) images of three-dimensional (3D) samples were simulated. The samples consisted of a micrometer(s)-thick substrate and gold nanoparticles at various vertical positions. The atomic number (Z) contrast as obtained via the annular dark-field detector was generated. The simulations were carried out using the Monte Carlo method in the CASINO software (freeware). The software was adapted to include the STEM imaging modality, including the noise characteristics of the electron source, the conical shape of the beam, and 3D scanning. Simulated STEM images of nanoparticles on a carbon substrate revealed the influence of the electron dose on the visibility of the nanoparticles. The 3D datasets obtained by simulating focal series showed the effect of beam broadening on the spatial resolution and on the signal-to-noise ratio. Monte Carlo simulations of STEM imaging of nanoparticles on a thick water layer were compared with experimental data by programming the exact sample geometry. The simulated image corresponded to the experimental image, and the signal-to-noise levels were similar. The Monte Carlo simulation strategy described here can be used to calculate STEM images of objects of an arbitrary geometry and amorphous sample composition. This information can then be used, for example, to optimize the microscope settings for imaging sessions where a low electron dose is crucial for the design of equipment, or for the analysis of the composition of a certain specimen.

摘要

对三维(3D)样品的扫描透射电子显微镜(STEM)图像进行了模拟。这些样品由厚度为微米的衬底和处于不同垂直位置的金纳米粒子组成。通过环形暗场探测器获得原子数(Z)对比度。使用蒙特卡罗方法在 CASINO 软件(免费软件)中进行了模拟。该软件经过了调整,包括 STEM 成像模式、电子源的噪声特性、光束的锥形形状和 3D 扫描。模拟的碳衬底上纳米粒子的 STEM 图像显示了电子剂量对纳米粒子可见度的影响。通过模拟焦平面系列获得的 3D 数据集显示了光束展宽对空间分辨率和信噪比的影响。通过编程精确的样品几何形状,将纳米粒子在厚水层上的 STEM 成像的蒙特卡罗模拟与实验数据进行了比较。模拟图像与实验图像相对应,信号噪声水平相似。此处描述的蒙特卡罗模拟策略可用于计算任意几何形状和非晶样品成分的物体的 STEM 图像。这些信息可用于优化显微镜设置,例如对于设计设备至关重要的低电子剂量成像会话,或者用于分析特定样品的成分。

相似文献

1
Simulating STEM imaging of nanoparticles in micrometers-thick substrates.
Microsc Microanal. 2010 Dec;16(6):795-804. doi: 10.1017/S1431927610094080. Epub 2010 Oct 20.
2
The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.
Microsc Microanal. 2012 Jun;18(3):582-90. doi: 10.1017/S1431927612000232. Epub 2012 May 8.
3
Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
Ultramicroscopy. 2016 Dec;171:166-176. doi: 10.1016/j.ultramic.2016.08.008. Epub 2016 Aug 6.
4
Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections.
Ultramicroscopy. 2009 Feb;109(3):213-21. doi: 10.1016/j.ultramic.2008.10.005. Epub 2008 Oct 25.
6
Nanometer-resolution electron microscopy through micrometers-thick water layers.
Ultramicroscopy. 2010 Aug;110(9):1114-9. doi: 10.1016/j.ultramic.2010.04.001. Epub 2010 Jun 2.
7
Electron beam broadening in electron-transparent samples at low electron energies.
J Microsc. 2019 Jun;274(3):150-157. doi: 10.1111/jmi.12793. Epub 2019 May 2.
8
Dark-Field Scanning Transmission Ion Microscopy via Detection of Forward-Scattered Helium Ions with a Microchannel Plate.
Microsc Microanal. 2016 Jun;22(3):544-50. doi: 10.1017/S1431927616000775. Epub 2016 May 6.
10
Scanning transmission electron microscopy methods for the analysis of nanoparticles.
Methods Mol Biol. 2012;906:453-71. doi: 10.1007/978-1-61779-953-2_37.

引用本文的文献

1
Tunability of Interactions between the Core and Shell in Rattle-Type Particles Studied with Liquid-Cell Electron Microscopy.
ACS Nano. 2021 Jul 27;15(7):11137-11149. doi: 10.1021/acsnano.1c03140. Epub 2021 Jun 16.
2
Study of the Wet Chemical Etching of SiO and Nanoparticle@SiO Core-Shell Nanospheres.
ACS Appl Nano Mater. 2021 Feb 26;4(2):1136-1148. doi: 10.1021/acsanm.0c02771. Epub 2021 Jan 5.
4
Quantification and optimization of ADF-STEM image contrast for beam-sensitive materials.
R Soc Open Sci. 2018 May 2;5(5):171838. doi: 10.1098/rsos.171838. eCollection 2018 May.
5
Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle.
Ultramicroscopy. 2016 Dec;171:166-176. doi: 10.1016/j.ultramic.2016.08.008. Epub 2016 Aug 6.
6
Simulating realistic imaging conditions for in situ liquid microscopy.
Ultramicroscopy. 2013 Dec;135:36-42. doi: 10.1016/j.ultramic.2013.05.010. Epub 2013 May 27.
7
The probe profile and lateral resolution of scanning transmission electron microscopy of thick specimens.
Microsc Microanal. 2012 Jun;18(3):582-90. doi: 10.1017/S1431927612000232. Epub 2012 May 8.
8
Electron microscopy of specimens in liquid.
Nat Nanotechnol. 2011 Oct 23;6(11):695-704. doi: 10.1038/nnano.2011.161.
9
Three-dimensional electron microscopy simulation with the CASINO Monte Carlo software.
Scanning. 2011 May-Jun;33(3):135-46. doi: 10.1002/sca.20262. Epub 2011 Jul 18.
10
Fully hydrated yeast cells imaged with electron microscopy.
Biophys J. 2011 May 18;100(10):2522-9. doi: 10.1016/j.bpj.2011.03.045.

本文引用的文献

1
A high efficiency annular dark field detector for STEM.
Ultramicroscopy. 1996 Jan;62(1-2):79-88. doi: 10.1016/0304-3991(95)00092-5.
2
Nanometer-resolution electron microscopy through micrometers-thick water layers.
Ultramicroscopy. 2010 Aug;110(9):1114-9. doi: 10.1016/j.ultramic.2010.04.001. Epub 2010 Jun 2.
3
Three-dimensional scanning transmission electron microscopy of biological specimens.
Microsc Microanal. 2010 Feb;16(1):54-63. doi: 10.1017/S1431927609991280.
4
Nanoscale 3D cellular imaging by axial scanning transmission electron tomography.
Nat Methods. 2009 Oct;6(10):729-31. doi: 10.1038/nmeth.1367. Epub 2009 Aug 30.
5
Electron microscopy of whole cells in liquid with nanometer resolution.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2159-64. doi: 10.1073/pnas.0809567106. Epub 2009 Jan 21.
6
Monte Carlo electron-trajectory simulations in bright-field and dark-field STEM: implications for tomography of thick biological sections.
Ultramicroscopy. 2009 Feb;109(3):213-21. doi: 10.1016/j.ultramic.2008.10.005. Epub 2008 Oct 25.
7
STEM tomography for thick biological specimens.
Ultramicroscopy. 2008 Dec;109(1):70-80. doi: 10.1016/j.ultramic.2008.08.005. Epub 2008 Sep 10.
8
Determination of quantitative distributions of heavy-metal stain in biological specimens by annular dark-field STEM.
J Struct Biol. 2008 Apr;162(1):14-28. doi: 10.1016/j.jsb.2008.01.007. Epub 2008 Jan 26.
9
Visibility of single atoms.
Science. 1970 Jun 12;168(3937):1338-40. doi: 10.1126/science.168.3937.1338.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验