Suppr超能文献

模拟原位液体显微镜的真实成像条件。

Simulating realistic imaging conditions for in situ liquid microscopy.

机构信息

Department of Chemical Engineering and Materials Science, University of California, Davis, CA, USA.

出版信息

Ultramicroscopy. 2013 Dec;135:36-42. doi: 10.1016/j.ultramic.2013.05.010. Epub 2013 May 27.

Abstract

In situ transmission electron microscopy enables the imaging of biological cells, macromolecular protein complexes, nanoparticles, and other systems in a near-native environment. In order to improve interpretation of image contrast features and also predict ideal imaging conditions ahead of time, new virtual electron microscopic techniques are needed. A technique for virtual fluid-stage high-angle annular dark-field scanning transmission electron microscopy with the multislice method is presented that enables the virtual imaging of model fluid-stage systems composed of millions of atoms. The virtual technique is exemplified by simulating images of PbS nanoparticles under different imaging conditions and the results agree with previous experimental findings. General insight is obtained on the influence of the effects of fluid path length, membrane thickness, nanoparticle position, defocus and other microscope parameters on attainable image quality.

摘要

原位透射电子显微镜能够在近乎自然的环境下对生物细胞、大分子蛋白质复合物、纳米粒子和其他系统进行成像。为了提高对图像对比特征的解释能力,并预先预测理想的成像条件,需要新的虚拟电子显微镜技术。提出了一种基于多层面法的虚拟流体相高角环形暗场扫描透射电子显微镜技术,可对由数百万个原子组成的模型流体相系统进行虚拟成像。该虚拟技术通过模拟不同成像条件下的 PbS 纳米粒子的图像进行了示例,结果与先前的实验结果一致。获得了关于流体路径长度、膜厚度、纳米粒子位置、散焦和其他显微镜参数对可达到的图像质量的影响的一般见解。

相似文献

1
Simulating realistic imaging conditions for in situ liquid microscopy.
Ultramicroscopy. 2013 Dec;135:36-42. doi: 10.1016/j.ultramic.2013.05.010. Epub 2013 May 27.
2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.
Microsc Microanal. 2012 Jun;18(3):621-7. doi: 10.1017/S1431927612000104.
6
Kinematic HAADF-STEM image simulation of small nanoparticles.
Micron. 2015 Jul;74:47-53. doi: 10.1016/j.micron.2015.04.005. Epub 2015 Apr 22.
7
Quantitative analysis of ultrathin doping layers in semiconductors using high-angle annular dark field images.
J Microsc. 1999 Apr;194(1):171-182. doi: 10.1046/j.1365-2818.1999.00458.x.
8
Imaging properties of bright-field and annular-dark-field scanning confocal electron microscopy.
Ultramicroscopy. 2010 Dec;111(1):20-6. doi: 10.1016/j.ultramic.2010.08.004.
9
Scanning transmission electron microscopy methods for the analysis of nanoparticles.
Methods Mol Biol. 2012;906:453-71. doi: 10.1007/978-1-61779-953-2_37.
10
Simulation study of aberration-corrected high-resolution transmission electron microscopy imaging of few-layer-graphene stacking.
Microsc Microanal. 2010 Apr;16(2):194-9. doi: 10.1017/S1431927609991309. Epub 2010 Jan 26.

引用本文的文献

1
Direct Observation of Early Stages of Growth of Multilayered DNA-Templated Au-Pd-Au Core-Shell Nanoparticles in Liquid Phase.
Front Bioeng Biotechnol. 2019 Feb 26;7:19. doi: 10.3389/fbioe.2019.00019. eCollection 2019.

本文引用的文献

1
Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth.
ACS Nano. 2012 Oct 23;6(10):8599-610. doi: 10.1021/nn303371y. Epub 2012 Sep 13.
2
Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials.
Ultramicroscopy. 2013 Apr;127:53-63. doi: 10.1016/j.ultramic.2012.07.018. Epub 2012 Jul 27.
3
Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy.
Microsc Microanal. 2012 Jun;18(3):621-7. doi: 10.1017/S1431927612000104.
4
Direction-specific interactions control crystal growth by oriented attachment.
Science. 2012 May 25;336(6084):1014-8. doi: 10.1126/science.1219643.
5
Real-time imaging of Pt3Fe nanorod growth in solution.
Science. 2012 May 25;336(6084):1011-4. doi: 10.1126/science.1219185.
6
Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template.
ACS Nano. 2012 Apr 24;6(4):3589-96. doi: 10.1021/nn300671g. Epub 2012 Apr 2.
7
Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy.
Micron. 2012 Nov;43(11):1085-90. doi: 10.1016/j.micron.2012.01.018. Epub 2012 Feb 15.
8
Electron microscopy of specimens in liquid.
Nat Nanotechnol. 2011 Oct 23;6(11):695-704. doi: 10.1038/nnano.2011.161.
9
Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy.
Nano Lett. 2011 Jul 13;11(7):2809-13. doi: 10.1021/nl201166k. Epub 2011 May 27.
10
Simulating STEM imaging of nanoparticles in micrometers-thick substrates.
Microsc Microanal. 2010 Dec;16(6):795-804. doi: 10.1017/S1431927610094080. Epub 2010 Oct 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验