Suppr超能文献

使用真实几何形状和更新的血流动力学载荷模拟腹主动脉瘤生长。

Simulation of abdominal aortic aneurysm growth with updating hemodynamic loads using a realistic geometry.

机构信息

Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1224, USA.

出版信息

Med Eng Phys. 2011 Jan;33(1):80-8. doi: 10.1016/j.medengphy.2010.09.012. Epub 2010 Oct 18.

Abstract

Advances in modeling vascular tissue growth and remodeling (G&R) as well as medical imaging usher in a great potential for integrative computational mechanics to revolutionize the clinical treatment of cardiovascular diseases. A computational model of abdominal aortic aneurysm (AAA) enlargement has been previously developed based on realistic geometric models. In this work, we couple the computational simulation of AAA growth with the hemodynamics simulation in a stepwise, iterative manner and study the interrelation between the changes in wall shear stress (WSS) and arterial wall evolution. The G&R simulation computes a long-term vascular adaptation with constant hemodynamic loads, derived from the previous hemodynamics simulation, while the subsequent hemodynamics simulation computes hemodynamic loads on the vessel wall during the cardiac cycle using the evolved geometry. We hypothesize that low WSS promotes degradation of elastin during the progression of an AAA. It is shown that shear stress-induced degradation of elastin elevates wall stress and accelerates AAA enlargement. Regions of higher expansion correlate with regions of low WSS. Our results show that despite the crucial role of stress-mediated collagen turnover in compensating the loss of elastin, AAA enlargement can be accelerated through the effect of WSS. The present study is able to account for computational models of image-based AAA growth as well as important hemodynamic parameters with relatively low computational expense. We suggest that the present computational framework, in spite of its limitations, provides a useful foundation for future studies which may yield new insight into how aneurysms grow and rupture.

摘要

血管组织生长和重塑(G&R)模型的进展以及医学成像为综合计算力学带来了巨大的潜力,可以彻底改变心血管疾病的临床治疗方法。先前已经基于真实的几何模型开发了腹主动脉瘤(AAA)增大的计算模型。在这项工作中,我们以逐步迭代的方式将 AAA 生长的计算模拟与血流动力学模拟耦合在一起,并研究壁切应力(WSS)变化与动脉壁演化之间的相互关系。G&R 模拟在恒定血流动力学负载下计算长期血管适应,该负载来自先前的血流动力学模拟,而随后的血流动力学模拟则使用演化的几何形状在心动周期内计算血管壁上的血流动力学负载。我们假设低 WSS 会促进 AAA 进展过程中弹性蛋白的降解。结果表明,弹性蛋白的剪切力诱导降解会增加壁应力并加速 AAA 增大。较大的扩张区域与低 WSS 区域相关。我们的结果表明,尽管胶原转化的应力介导在补偿弹性蛋白损失方面起着至关重要的作用,但 WSS 的作用可以加速 AAA 的增大。本研究能够解释基于图像的 AAA 生长的计算模型以及重要的血流动力学参数,而计算费用相对较低。我们建议,尽管存在局限性,但本计算框架为未来的研究提供了有用的基础,这些研究可能会深入了解动脉瘤的生长和破裂方式。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验