Suppr超能文献

体内组织工程血管移植物的发育:流固生长模型。

In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model.

机构信息

Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.

Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, 46022, Spain.

出版信息

Biomech Model Mechanobiol. 2022 Jun;21(3):827-848. doi: 10.1007/s10237-022-01562-9. Epub 2022 Feb 18.

Abstract

Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, there is now a pressing need to design grafts to have optimal performance, including an ability to grow and remodel in response to changing hemodynamic loads. Toward this end, there is similarly a need for computational methods that can describe and predict the evolution of TEVG geometry, composition, and material properties while accounting for changes in hemodynamics. Although the ultimate goal is a fluid-solid-growth (FSG) model incorporating fully 3D growth and remodeling and 3D hemodynamics, lower fidelity models having high computational efficiency promise to play important roles, especially in the design of candidate grafts. We introduce here an efficient FSG model of in vivo development of a TEVG based on two simplifying concepts: mechanobiologically equilibrated growth and remodeling of the graft and an embedded control volume analysis of the hemodynamics. Illustrative simulations for a model Fontan conduit reveal the utility of this approach, which promises to be particularly useful in initial design considerations involving formal methods of optimization which otherwise add considerably to the computational expense.

摘要

组织工程学方法不断发展,多项临床试验正在评估组织工程血管移植物(TEVG)。虽然最初的关注点集中在缝线固定和破裂压力上,但现在迫切需要设计具有最佳性能的移植物,包括能够响应变化的血流动力学负荷生长和重塑的能力。为此,同样需要能够描述和预测 TEVG 几何形状、组成和材料特性演变的计算方法,同时考虑血流动力学的变化。尽管最终目标是一个包含完全 3D 生长和重塑以及 3D 血流动力学的流固生长(FSG)模型,但具有高计算效率的低保真模型有望发挥重要作用,特别是在候选移植物的设计中。我们在这里引入了一种基于两个简化概念的 TEVG 体内发育的高效 FSG 模型:移植物的机械生物学平衡生长和重塑以及血流动力学的嵌入式控制体积分析。对模型 Fontan 导管的说明性模拟显示了这种方法的实用性,它在涉及正式优化方法的初始设计考虑中特别有用,否则会大大增加计算费用。

相似文献

1
In vivo development of tissue engineered vascular grafts: a fluid-solid-growth model.
Biomech Model Mechanobiol. 2022 Jun;21(3):827-848. doi: 10.1007/s10237-022-01562-9. Epub 2022 Feb 18.
3
Preclinical study of patient-specific cell-free nanofiber tissue-engineered vascular grafts using 3-dimensional printing in a sheep model.
J Thorac Cardiovasc Surg. 2017 Apr;153(4):924-932. doi: 10.1016/j.jtcvs.2016.10.066. Epub 2016 Nov 14.
4
Bioresorbable silk grafts for small diameter vascular tissue engineering applications: In vitro and in vivo functional analysis.
Acta Biomater. 2020 Mar 15;105:146-158. doi: 10.1016/j.actbio.2020.01.020. Epub 2020 Jan 17.
5
Tissue engineered small-diameter vascular grafts.
Clin Plast Surg. 2003 Oct;30(4):507-17. doi: 10.1016/s0094-1298(03)00069-5.
6
Tissue engineered vascular grafts: current state of the field.
Expert Rev Med Devices. 2017 May;14(5):383-392. doi: 10.1080/17434440.2017.1324293. Epub 2017 May 9.
7
Improvement of a Novel Small-diameter Tissue-engineered Arterial Graft With Heparin Conjugation.
Ann Thorac Surg. 2021 Apr;111(4):1234-1241. doi: 10.1016/j.athoracsur.2020.06.112. Epub 2020 Sep 16.
8
Tissue Engineering of Vascular Grafts: A Case Report From Bench to Bedside and Back.
Arterioscler Thromb Vasc Biol. 2023 Mar;43(3):399-409. doi: 10.1161/ATVBAHA.122.318236. Epub 2023 Jan 12.
9
Optimization of Tissue-Engineered Vascular Graft Design Using Computational Modeling.
Tissue Eng Part C Methods. 2019 Oct;25(10):561-570. doi: 10.1089/ten.TEC.2019.0086. Epub 2019 Sep 3.
10
Electrospinning of biomimetic scaffolds for tissue-engineered vascular grafts: threading the path.
Expert Rev Cardiovasc Ther. 2014 Jul;12(7):815-32. doi: 10.1586/14779072.2014.925397. Epub 2014 Jun 6.

引用本文的文献

1
Constrained optimization of scaffold behavior for improving tissue engineered vascular grafts.
J Biomech. 2025 Jun;186:112670. doi: 10.1016/j.jbiomech.2025.112670. Epub 2025 Apr 18.
2
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method.
Comput Methods Appl Mech Eng. 2024 Nov 1;431. doi: 10.1016/j.cma.2024.117259. Epub 2024 Aug 6.
3
Hemodynamics and Wall Mechanics of Vascular Graft Failure.
Arterioscler Thromb Vasc Biol. 2024 May;44(5):1065-1085. doi: 10.1161/ATVBAHA.123.318239. Epub 2024 Apr 4.
4
A Fluid-Solid-Growth Solver for Cardiovascular Modeling.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116312. Epub 2023 Aug 9.
5
Modelling the anisotropic inelastic response of polymeric scaffolds for tissue engineering applications.
J R Soc Interface. 2023 Sep;20(206):20230318. doi: 10.1098/rsif.2023.0318. Epub 2023 Sep 13.
6
A computational growth and remodeling framework for adaptive and maladaptive pulmonary arterial hemodynamics.
Biomech Model Mechanobiol. 2023 Dec;22(6):1935-1951. doi: 10.1007/s10237-023-01744-z. Epub 2023 Sep 2.

本文引用的文献

1
Tissue engineered vascular grafts transform into autologous neovessels capable of native function and growth.
Commun Med (Lond). 2022 Jan 10;2:3. doi: 10.1038/s43856-021-00063-7. eCollection 2022.
2
Hemodynamic performance of tissue-engineered vascular grafts in Fontan patients.
NPJ Regen Med. 2021 Jul 22;6(1):38. doi: 10.1038/s41536-021-00148-w.
4
Coupling hemodynamics with mechanobiology in patient-specific computational models of ascending thoracic aortic aneurysms.
Comput Methods Programs Biomed. 2021 Jun;205:106107. doi: 10.1016/j.cmpb.2021.106107. Epub 2021 Apr 15.
5
In-vivo assessment of a tissue engineered vascular graft computationally optimized for target vessel compliance.
Acta Biomater. 2021 Mar 15;123:298-311. doi: 10.1016/j.actbio.2020.12.058. Epub 2021 Jan 20.
6
Numerical knockouts-In silico assessment of factors predisposing to thoracic aortic aneurysms.
PLoS Comput Biol. 2020 Oct 20;16(10):e1008273. doi: 10.1371/journal.pcbi.1008273. eCollection 2020 Oct.
7
Bioengineered human blood vessels.
Science. 2020 Oct 9;370(6513). doi: 10.1126/science.aaw8682.
8
Total cavopulmonary connection with a new restorative vascular graft: results at 2 years.
J Thorac Dis. 2020 Aug;12(8):4168-4173. doi: 10.21037/jtd-19-739.
9
Fast, Rate-Independent, Finite Element Implementation of a 3D Constrained Mixture Model of Soft Tissue Growth and Remodeling.
Comput Methods Appl Mech Eng. 2020 Aug 15;368. doi: 10.1016/j.cma.2020.113156. Epub 2020 Jun 5.
10
Modeling intracranial aneurysm stability and growth: an integrative mechanobiological framework for clinical cases.
Biomech Model Mechanobiol. 2020 Dec;19(6):2413-2431. doi: 10.1007/s10237-020-01351-2. Epub 2020 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验