Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA.
Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, 46022, Spain.
Biomech Model Mechanobiol. 2022 Jun;21(3):827-848. doi: 10.1007/s10237-022-01562-9. Epub 2022 Feb 18.
Methods of tissue engineering continue to advance, and multiple clinical trials are underway evaluating tissue engineered vascular grafts (TEVGs). Whereas initial concerns focused on suture retention and burst pressure, there is now a pressing need to design grafts to have optimal performance, including an ability to grow and remodel in response to changing hemodynamic loads. Toward this end, there is similarly a need for computational methods that can describe and predict the evolution of TEVG geometry, composition, and material properties while accounting for changes in hemodynamics. Although the ultimate goal is a fluid-solid-growth (FSG) model incorporating fully 3D growth and remodeling and 3D hemodynamics, lower fidelity models having high computational efficiency promise to play important roles, especially in the design of candidate grafts. We introduce here an efficient FSG model of in vivo development of a TEVG based on two simplifying concepts: mechanobiologically equilibrated growth and remodeling of the graft and an embedded control volume analysis of the hemodynamics. Illustrative simulations for a model Fontan conduit reveal the utility of this approach, which promises to be particularly useful in initial design considerations involving formal methods of optimization which otherwise add considerably to the computational expense.
组织工程学方法不断发展,多项临床试验正在评估组织工程血管移植物(TEVG)。虽然最初的关注点集中在缝线固定和破裂压力上,但现在迫切需要设计具有最佳性能的移植物,包括能够响应变化的血流动力学负荷生长和重塑的能力。为此,同样需要能够描述和预测 TEVG 几何形状、组成和材料特性演变的计算方法,同时考虑血流动力学的变化。尽管最终目标是一个包含完全 3D 生长和重塑以及 3D 血流动力学的流固生长(FSG)模型,但具有高计算效率的低保真模型有望发挥重要作用,特别是在候选移植物的设计中。我们在这里引入了一种基于两个简化概念的 TEVG 体内发育的高效 FSG 模型:移植物的机械生物学平衡生长和重塑以及血流动力学的嵌入式控制体积分析。对模型 Fontan 导管的说明性模拟显示了这种方法的实用性,它在涉及正式优化方法的初始设计考虑中特别有用,否则会大大增加计算费用。