Research School of Chemistry, Australian National University, Canberra, ACT 0200, Australia.
Chemistry. 2010 Dec 17;16(47):14026-42. doi: 10.1002/chem.201001132.
Density functional theory calculations are reported on a set of three model structures of the Mn(4)Ca cluster in the water-oxidizing complex of Photosystem II (PSII), which share the structural formula CaMn(4)C(9)H(10)N(2)O(16)·(H(2)O)(n) (q=-1, 0, 1, 2, 3; n=0-7). In these calculations we have explored the preferred hydration sites of the Mn(4)Ca cluster across five overall oxidation states (S(0) to S(4)) and all feasible magnetic-coupling arrangements to identify the most likely substrate-water binding sites. We have also explored charge-compensated structures in which the overall charge on the cluster is maintained at q=0 or +1, which is consistent with the experimental data on sequential proton loss in the real system. The three model structures have skeletal arrangements that are strongly reminiscent, in their relative metal-atom positions, of the 2.9-, 3.7-, and 3.5 Å-resolution crystal structures, respectively, whereas the charge states encompassed in our study correspond to an assignment of (Mn(III))(3)Mn(II) for S(0) and up to (Mn(IV))(3)Mn(III) for S(4). The three models differ principally in terms of the spatial relationship between one Mn (Mn(4)) and a generally robust Mn(3)Ca tetrahedron that contains Mn(1), Mn(2), and Mn(3). Oxidation-state distributions across the four manganese atoms, in most of the explored charge states, are dependent on details of the cluster geometry, on the extent of assumed hydration of the clusters, and in some instances on the imposed magnetic-coupling between adjacent Mn atoms. The strongest water-binding sites are generally those on Mn(4) and Ca. However, one structure type displays a high-affinity binding site between Ca and Mn(3), the S-state-dependent binding-energy pattern of which is most consistent with the substrate water-exchange kinetics observed in functional PSII. This structure type also permits another water molecule to access the cluster in a manner consistent with the substrate-water interaction with the Mn cluster, seen in electron spin-echo envelope modulation (ESEEM) studies of the functional enzyme in the S(0) and S(2) states. It also rationalizes the significant differences in hydrogen-bonding interactions of the substrate water observed in the FTIR measurements of the S(1) and S(2) states. We suggest that these two water-binding sites, which are molecularly close, model the actual substrate-binding sites in the enzyme.
报道了一组三种模型结构的锰(4)钙簇在光合作用系统 II (PSII)的水氧化复合物中的密度泛函理论计算,这些模型结构具有相同的结构公式[CaMn(4)C(9)H(10)N(2)O(16)](q+)·(H(2)O)(n)(q=-1,0,1,2,3;n=0-7)。在这些计算中,我们探索了锰(4)钙簇在五个整体氧化态(S(0)至 S(4))和所有可行的磁耦合排列中的首选水合位置,以确定最可能的底物-水结合位点。我们还探索了电荷补偿结构,其中簇的总电荷保持在 q=0 或+1,这与实际系统中顺序质子损失的实验数据一致。这三种模型结构的骨架排列在相对金属原子位置上强烈地让人联想到 2.9、3.7 和 3.5 Å 分辨率晶体结构,而我们研究的电荷状态对应于(Mn(III))(3)Mn(II)的分配为 S(0),最高可达(Mn(IV))(3)Mn(III)的 S(4)。这三种模型主要在一个锰(Mn(4))和一个通常坚固的 Mn(3)Ca 四面体之间的空间关系上有所不同,该四面体包含 Mn(1)、Mn(2)和 Mn(3)。在大多数探索的电荷状态下,四个锰原子之间的氧化态分布取决于簇几何形状的细节、簇水合程度的假设以及在某些情况下相邻锰原子之间的强制磁耦合。最强的水结合位点通常是 Mn(4)和 Ca 上的位点。然而,有一种结构类型显示了 Ca 和 Mn(3)之间的高亲和力结合位点,其状态依赖性结合能模式与功能 PSII 中观察到的底物水交换动力学最一致。这种结构类型还允许另一个水分子以与电子自旋回波调制(ESEEM)研究中功能酶在 S(0)和 S(2)状态下与 Mn 簇相互作用一致的方式进入簇,也合理化了在 FTIR 测量的 S(1)和 S(2)状态下观察到的底物水的氢键相互作用的显著差异。我们建议这两个水分子结合位点,分子上接近,模拟了酶中的实际底物结合位点。